Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947075737> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2947075737 endingPage "25" @default.
- W2947075737 startingPage "25" @default.
- W2947075737 abstract "The diagnosis of uterine myoma often referred to as fibroid is poor mostly as women with the ailment present fewer symptoms at the early stage and get less clinical attention. Most times, the tumour is undiagnosed till it gets to an advanced stage, and may also be as a result of the relatively expensive diagnostic equipment used. Over the years the increase in uteri myoma has called for a model that could rapidly recognise the neoplasm at an early stage. In this study, we design a relatively specific model for the detection of uterine myoma. Matrix Laboratory (MATLAB version 7.5.0, R2007b) was used to implement the combined fuzzy logic classifier called adaptive neuro-fuzzy inference system (ANFIS) model. The dataset that was used in training the ANFIS model consist of 90 cases, which involve 78% (70 cases) of the entire dataset that was used in the training process of the system. The remaining 22% (20 cases) of the data were also used in the testing process of the system, which the system will get adapted to for subsequent recognition of similar cases. The ANFIS program was designed using a bell membership function that utilises a hybrid optimisation method with an error tolerance of 0.05. The training dataset was passed through the ANFIS for 30 epochs. At the end of the simulation, the system had a training error of 0.016169 with the training dataset and an average testing error of 0.010315. The system was able to classify approximately 99% of the test data set accurately. Therefore, we have successfully classified the symptoms of uterine fibroid using combined fuzzy-logic and neural network classifiers for vulnerable women.Keywords: Artificial intelligence, ANFIS classifier, Fuzzy-logic, Fibroid & Uterine myoma." @default.
- W2947075737 created "2019-06-07" @default.
- W2947075737 creator A5023603297 @default.
- W2947075737 creator A5057026972 @default.
- W2947075737 creator A5069090024 @default.
- W2947075737 creator A5073315212 @default.
- W2947075737 date "2019-05-27" @default.
- W2947075737 modified "2023-09-26" @default.
- W2947075737 title "Combined Fuzzy-logic and Neural Network Classifiers for Uterine Fibroid in vulnerable women" @default.
- W2947075737 doi "https://doi.org/10.4314/njtr.v14i1.4" @default.
- W2947075737 hasPublicationYear "2019" @default.
- W2947075737 type Work @default.
- W2947075737 sameAs 2947075737 @default.
- W2947075737 citedByCount "0" @default.
- W2947075737 crossrefType "journal-article" @default.
- W2947075737 hasAuthorship W2947075737A5023603297 @default.
- W2947075737 hasAuthorship W2947075737A5057026972 @default.
- W2947075737 hasAuthorship W2947075737A5069090024 @default.
- W2947075737 hasAuthorship W2947075737A5073315212 @default.
- W2947075737 hasConcept C105795698 @default.
- W2947075737 hasConcept C111919701 @default.
- W2947075737 hasConcept C119857082 @default.
- W2947075737 hasConcept C139945424 @default.
- W2947075737 hasConcept C146357865 @default.
- W2947075737 hasConcept C151730666 @default.
- W2947075737 hasConcept C153180895 @default.
- W2947075737 hasConcept C154945302 @default.
- W2947075737 hasConcept C186108316 @default.
- W2947075737 hasConcept C195975749 @default.
- W2947075737 hasConcept C2780365114 @default.
- W2947075737 hasConcept C2988105877 @default.
- W2947075737 hasConcept C33923547 @default.
- W2947075737 hasConcept C41008148 @default.
- W2947075737 hasConcept C50644808 @default.
- W2947075737 hasConcept C58166 @default.
- W2947075737 hasConcept C86803240 @default.
- W2947075737 hasConcept C95623464 @default.
- W2947075737 hasConceptScore W2947075737C105795698 @default.
- W2947075737 hasConceptScore W2947075737C111919701 @default.
- W2947075737 hasConceptScore W2947075737C119857082 @default.
- W2947075737 hasConceptScore W2947075737C139945424 @default.
- W2947075737 hasConceptScore W2947075737C146357865 @default.
- W2947075737 hasConceptScore W2947075737C151730666 @default.
- W2947075737 hasConceptScore W2947075737C153180895 @default.
- W2947075737 hasConceptScore W2947075737C154945302 @default.
- W2947075737 hasConceptScore W2947075737C186108316 @default.
- W2947075737 hasConceptScore W2947075737C195975749 @default.
- W2947075737 hasConceptScore W2947075737C2780365114 @default.
- W2947075737 hasConceptScore W2947075737C2988105877 @default.
- W2947075737 hasConceptScore W2947075737C33923547 @default.
- W2947075737 hasConceptScore W2947075737C41008148 @default.
- W2947075737 hasConceptScore W2947075737C50644808 @default.
- W2947075737 hasConceptScore W2947075737C58166 @default.
- W2947075737 hasConceptScore W2947075737C86803240 @default.
- W2947075737 hasConceptScore W2947075737C95623464 @default.
- W2947075737 hasIssue "1" @default.
- W2947075737 hasLocation W29470757371 @default.
- W2947075737 hasOpenAccess W2947075737 @default.
- W2947075737 hasPrimaryLocation W29470757371 @default.
- W2947075737 hasRelatedWork W2006360470 @default.
- W2947075737 hasRelatedWork W2088420466 @default.
- W2947075737 hasRelatedWork W2300290509 @default.
- W2947075737 hasRelatedWork W2392430664 @default.
- W2947075737 hasRelatedWork W2499167147 @default.
- W2947075737 hasRelatedWork W2785395359 @default.
- W2947075737 hasRelatedWork W2914044032 @default.
- W2947075737 hasRelatedWork W2961085424 @default.
- W2947075737 hasRelatedWork W3025444948 @default.
- W2947075737 hasRelatedWork W4310906510 @default.
- W2947075737 hasVolume "14" @default.
- W2947075737 isParatext "false" @default.
- W2947075737 isRetracted "false" @default.
- W2947075737 magId "2947075737" @default.
- W2947075737 workType "article" @default.