Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947125492> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2947125492 endingPage "431" @default.
- W2947125492 startingPage "423" @default.
- W2947125492 abstract "PurposeTo investigate a Bayesian network (BN)-based method to detect errors in external beam radiation therapy physician orders.Methods and MaterialsA total of 4431 external beam radiation therapy orders from 2008 to 2017 at the authors’ institution were obtained from clinical treatment management systems and divided into 3 groups: single prescription, concurrent boost, and sequential boost. Multiple BNs were developed for each group to detect errors in new orders using joint posterior probabilities of the order parameters, given disease information. Each BN was trained with a group of orders using a Bayesian learning algorithm. A procedure was developed to select the optimal BN for each treatment site in each group and to determine site-specific parameters and error detection thresholds. Potential clinical errors, created both manually and automatically, were applied to test error detection performance.ResultsThe average true-positive rate (TPR) and false-positive rate (FPR) of error detection were 95.72% and 1.99%, respectively, for the single-prescription cohort with 9 treatment sites. For the concurrent-boost cohort, the TPR and FPR were 92.94% and 14.53%, respectively. For the sequential-boost cohort, the TPR and FPR were 100% and 9.48%, respectively, for the prescribed dose values and 100% and 4.34%, respectively, for the remaining order parameters. For the patient simulation and imaging parameters for 9 treatment sites, the TPR and FPR were 100% and 4.96%, respectively.ConclusionsThe probabilistic BN method was able to perform physician order error detection at a higher accuracy than previously reported in a variety of complex prescription instances, thus warranting further development in incorporating BNs into clinical error detection tools to assist manual physician order checks. To investigate a Bayesian network (BN)-based method to detect errors in external beam radiation therapy physician orders. A total of 4431 external beam radiation therapy orders from 2008 to 2017 at the authors’ institution were obtained from clinical treatment management systems and divided into 3 groups: single prescription, concurrent boost, and sequential boost. Multiple BNs were developed for each group to detect errors in new orders using joint posterior probabilities of the order parameters, given disease information. Each BN was trained with a group of orders using a Bayesian learning algorithm. A procedure was developed to select the optimal BN for each treatment site in each group and to determine site-specific parameters and error detection thresholds. Potential clinical errors, created both manually and automatically, were applied to test error detection performance. The average true-positive rate (TPR) and false-positive rate (FPR) of error detection were 95.72% and 1.99%, respectively, for the single-prescription cohort with 9 treatment sites. For the concurrent-boost cohort, the TPR and FPR were 92.94% and 14.53%, respectively. For the sequential-boost cohort, the TPR and FPR were 100% and 9.48%, respectively, for the prescribed dose values and 100% and 4.34%, respectively, for the remaining order parameters. For the patient simulation and imaging parameters for 9 treatment sites, the TPR and FPR were 100% and 4.96%, respectively. The probabilistic BN method was able to perform physician order error detection at a higher accuracy than previously reported in a variety of complex prescription instances, thus warranting further development in incorporating BNs into clinical error detection tools to assist manual physician order checks." @default.
- W2947125492 created "2019-06-07" @default.
- W2947125492 creator A5038261152 @default.
- W2947125492 creator A5044242635 @default.
- W2947125492 creator A5068853170 @default.
- W2947125492 creator A5089586439 @default.
- W2947125492 date "2019-10-01" @default.
- W2947125492 modified "2023-09-22" @default.
- W2947125492 title "Development and Validation of a Bayesian Network Method to Detect External Beam Radiation Therapy Physician Order Errors" @default.
- W2947125492 cites W1968731431 @default.
- W2947125492 cites W1986387837 @default.
- W2947125492 cites W1990368528 @default.
- W2947125492 cites W1995900466 @default.
- W2947125492 cites W1999676687 @default.
- W2947125492 cites W2019527086 @default.
- W2947125492 cites W2040485187 @default.
- W2947125492 cites W2093371459 @default.
- W2947125492 cites W2117231742 @default.
- W2947125492 cites W2122177835 @default.
- W2947125492 cites W2153947602 @default.
- W2947125492 cites W2158698691 @default.
- W2947125492 cites W2162737890 @default.
- W2947125492 cites W2163399589 @default.
- W2947125492 cites W2295556464 @default.
- W2947125492 cites W2472443435 @default.
- W2947125492 cites W2472454727 @default.
- W2947125492 cites W2553981441 @default.
- W2947125492 cites W266443624 @default.
- W2947125492 cites W2789598342 @default.
- W2947125492 cites W4236354166 @default.
- W2947125492 cites W4243768359 @default.
- W2947125492 cites W4246859390 @default.
- W2947125492 cites W4298880176 @default.
- W2947125492 cites W4376601369 @default.
- W2947125492 doi "https://doi.org/10.1016/j.ijrobp.2019.05.034" @default.
- W2947125492 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31158426" @default.
- W2947125492 hasPublicationYear "2019" @default.
- W2947125492 type Work @default.
- W2947125492 sameAs 2947125492 @default.
- W2947125492 citedByCount "5" @default.
- W2947125492 countsByYear W29471254922020 @default.
- W2947125492 countsByYear W29471254922021 @default.
- W2947125492 countsByYear W29471254922022 @default.
- W2947125492 crossrefType "journal-article" @default.
- W2947125492 hasAuthorship W2947125492A5038261152 @default.
- W2947125492 hasAuthorship W2947125492A5044242635 @default.
- W2947125492 hasAuthorship W2947125492A5068853170 @default.
- W2947125492 hasAuthorship W2947125492A5089586439 @default.
- W2947125492 hasConcept C105795698 @default.
- W2947125492 hasConcept C107673813 @default.
- W2947125492 hasConcept C11413529 @default.
- W2947125492 hasConcept C126322002 @default.
- W2947125492 hasConcept C154945302 @default.
- W2947125492 hasConcept C2426938 @default.
- W2947125492 hasConcept C2989005 @default.
- W2947125492 hasConcept C33724603 @default.
- W2947125492 hasConcept C33923547 @default.
- W2947125492 hasConcept C41008148 @default.
- W2947125492 hasConcept C49937458 @default.
- W2947125492 hasConcept C71924100 @default.
- W2947125492 hasConcept C72563966 @default.
- W2947125492 hasConcept C98274493 @default.
- W2947125492 hasConceptScore W2947125492C105795698 @default.
- W2947125492 hasConceptScore W2947125492C107673813 @default.
- W2947125492 hasConceptScore W2947125492C11413529 @default.
- W2947125492 hasConceptScore W2947125492C126322002 @default.
- W2947125492 hasConceptScore W2947125492C154945302 @default.
- W2947125492 hasConceptScore W2947125492C2426938 @default.
- W2947125492 hasConceptScore W2947125492C2989005 @default.
- W2947125492 hasConceptScore W2947125492C33724603 @default.
- W2947125492 hasConceptScore W2947125492C33923547 @default.
- W2947125492 hasConceptScore W2947125492C41008148 @default.
- W2947125492 hasConceptScore W2947125492C49937458 @default.
- W2947125492 hasConceptScore W2947125492C71924100 @default.
- W2947125492 hasConceptScore W2947125492C72563966 @default.
- W2947125492 hasConceptScore W2947125492C98274493 @default.
- W2947125492 hasIssue "2" @default.
- W2947125492 hasLocation W29471254921 @default.
- W2947125492 hasOpenAccess W2947125492 @default.
- W2947125492 hasPrimaryLocation W29471254921 @default.
- W2947125492 hasRelatedWork W1734881440 @default.
- W2947125492 hasRelatedWork W2069572447 @default.
- W2947125492 hasRelatedWork W2128214664 @default.
- W2947125492 hasRelatedWork W2144365306 @default.
- W2947125492 hasRelatedWork W2315085516 @default.
- W2947125492 hasRelatedWork W2316407790 @default.
- W2947125492 hasRelatedWork W2371925260 @default.
- W2947125492 hasRelatedWork W2603773853 @default.
- W2947125492 hasRelatedWork W2749129940 @default.
- W2947125492 hasRelatedWork W2964295425 @default.
- W2947125492 hasVolume "105" @default.
- W2947125492 isParatext "false" @default.
- W2947125492 isRetracted "false" @default.
- W2947125492 magId "2947125492" @default.
- W2947125492 workType "article" @default.