Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947152020> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2947152020 abstract "ObjectiveBy systematically scoring algorithms and integrating outbreak data through statistical learning, evaluate and improve the performance of automated infectious-disease-outbreak detection. The improvements should be directly relevant to the epidemiological practice. A broader objective is to explore the usefulness of machine-learning approaches in epidemiology.IntroductionWithin the traditional surveillance of notifiable infectious diseases in Germany, not only are individual cases reported to the Robert Koch Institute, but also outbreaks themselves are recorded: A label is assigned by epidemiologists to each case, indicating whether it is part of an outbreak and of which. This expert knowledge represents, in the language of machine leaning, a ground truth for the algorithmic task of detecting outbreaks from a stream of surveillance data. The integration of this kind of information in the design and evaluation of algorithms is called supervised learning.MethodsReported cases were aggregated weekly and divided into two count time series, one for endemic (not part of an outbreak) and one for epidemic cases. Two new algorithms were developed for the analysis of such time series: farringtonOutbreak is an adaptation of the standard method farringtonFlexible as implemented in the surveillance R package: It trains on endemic case counts but detects anomalies on total case counts. The second algorithm is hmmOutbreak, which is based on a hidden Markov model (HMM): A binary hidden state indicates whether an outbreak was reported in a given week, the transition matrix for this state is learned from the outbreak data and this state is integrated as factor in a generalised linear model of the total case count. An explicit probability of being in a state of outbreak is then computed for each week (one-week ahead) and a signal is generated if it is higher than a user-defined threshold.To evaluate performance, we framed outbreak detection as a simple binary classification problem: Is there an outbreak in a given week, yes or no? Was a signal generated for this week, yes or no? One can thus count, for each time series, the true positives (outbreak data and signals agree), false positives, true negatives and false negatives. From those, classical performance scores can be computed, such as sensitivity, specificity, precision, F-score or area under the ROC curve (AUC).For the evaluation with real-word data we used time series of reported cases of salmonellosis and campylobacteriosis for each of the 412 German counties over 9 years. We also ran simple simulations with different parameter sets, generating count time series and outbreaks with the sim.pointSource function of the surveillance R package.ResultsWe have developed a supervised-learning framework for outbreak detection based on reported infections and outbreaks, proposing two algorithms and an evaluation method. hmmOutbreak performs overall much better than the standard farringtonFlexible, with e.g. a 60% improvement in sensitivity (0.5 compared to 0.3) at a fixed specificity of 0.9. The results were confirmed by simulations. Furthermore, the computation of explicit outbreak probabilities allows a better and clearer interpretation of detection results than the usual testing of the null hypothesis is endemic.ConclusionsMethods of machine learning can be usefully applied in the context of infectious-disease surveillance. Already a simple HMM shows large improvements and better interpretability: More refined methods, in particular semi-supervised approaches, look thus very promising. The systematic integration of available expert knowledge, in this case the recording of outbreaks, allows an evaluation of algorithmic performance that is of direct relevance for the epidemiological practice, in contrast to the usual intrinsic statistical metrics. Beyond that, this knowledge can be readily used to improve that performance and, in the future, gain insights in outbreak dynamics. Moreover, other types of labels will be similarly integrated in automated surveillance analyses, e.g. user feedback on whether a signal was relevant (reinforcement learning) or messages on specialised internet platforms that were found to be useful warnings of international epidemic events." @default.
- W2947152020 created "2019-06-07" @default.
- W2947152020 creator A5038414162 @default.
- W2947152020 creator A5038833056 @default.
- W2947152020 creator A5079624888 @default.
- W2947152020 date "2019-05-30" @default.
- W2947152020 modified "2023-10-13" @default.
- W2947152020 title "Supervised Learning for Automated Infectious-Disease-Outbreak Detection" @default.
- W2947152020 doi "https://doi.org/10.5210/ojphi.v11i1.9770" @default.
- W2947152020 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6606117" @default.
- W2947152020 hasPublicationYear "2019" @default.
- W2947152020 type Work @default.
- W2947152020 sameAs 2947152020 @default.
- W2947152020 citedByCount "1" @default.
- W2947152020 countsByYear W29471520202021 @default.
- W2947152020 crossrefType "journal-article" @default.
- W2947152020 hasAuthorship W2947152020A5038414162 @default.
- W2947152020 hasAuthorship W2947152020A5038833056 @default.
- W2947152020 hasAuthorship W2947152020A5079624888 @default.
- W2947152020 hasBestOaLocation W29471520201 @default.
- W2947152020 hasConcept C107130276 @default.
- W2947152020 hasConcept C116675565 @default.
- W2947152020 hasConcept C119857082 @default.
- W2947152020 hasConcept C124101348 @default.
- W2947152020 hasConcept C142724271 @default.
- W2947152020 hasConcept C154945302 @default.
- W2947152020 hasConcept C23224414 @default.
- W2947152020 hasConcept C2776480101 @default.
- W2947152020 hasConcept C2779134260 @default.
- W2947152020 hasConcept C41008148 @default.
- W2947152020 hasConcept C524204448 @default.
- W2947152020 hasConcept C71924100 @default.
- W2947152020 hasConceptScore W2947152020C107130276 @default.
- W2947152020 hasConceptScore W2947152020C116675565 @default.
- W2947152020 hasConceptScore W2947152020C119857082 @default.
- W2947152020 hasConceptScore W2947152020C124101348 @default.
- W2947152020 hasConceptScore W2947152020C142724271 @default.
- W2947152020 hasConceptScore W2947152020C154945302 @default.
- W2947152020 hasConceptScore W2947152020C23224414 @default.
- W2947152020 hasConceptScore W2947152020C2776480101 @default.
- W2947152020 hasConceptScore W2947152020C2779134260 @default.
- W2947152020 hasConceptScore W2947152020C41008148 @default.
- W2947152020 hasConceptScore W2947152020C524204448 @default.
- W2947152020 hasConceptScore W2947152020C71924100 @default.
- W2947152020 hasIssue "1" @default.
- W2947152020 hasLocation W29471520201 @default.
- W2947152020 hasLocation W29471520202 @default.
- W2947152020 hasOpenAccess W2947152020 @default.
- W2947152020 hasPrimaryLocation W29471520201 @default.
- W2947152020 hasRelatedWork W148050592 @default.
- W2947152020 hasRelatedWork W1974534365 @default.
- W2947152020 hasRelatedWork W1988073267 @default.
- W2947152020 hasRelatedWork W2012595616 @default.
- W2947152020 hasRelatedWork W2017805816 @default.
- W2947152020 hasRelatedWork W2047474854 @default.
- W2947152020 hasRelatedWork W2059836225 @default.
- W2947152020 hasRelatedWork W2071898334 @default.
- W2947152020 hasRelatedWork W2080087785 @default.
- W2947152020 hasRelatedWork W2081498408 @default.
- W2947152020 hasRelatedWork W2090051506 @default.
- W2947152020 hasRelatedWork W2102199953 @default.
- W2947152020 hasRelatedWork W2114586626 @default.
- W2947152020 hasRelatedWork W2142129511 @default.
- W2947152020 hasRelatedWork W2150377343 @default.
- W2947152020 hasRelatedWork W2168202339 @default.
- W2947152020 hasRelatedWork W2338757696 @default.
- W2947152020 hasRelatedWork W2960204139 @default.
- W2947152020 hasRelatedWork W3108495817 @default.
- W2947152020 hasRelatedWork W3112485321 @default.
- W2947152020 hasVolume "11" @default.
- W2947152020 isParatext "false" @default.
- W2947152020 isRetracted "false" @default.
- W2947152020 magId "2947152020" @default.
- W2947152020 workType "article" @default.