Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947160970> ?p ?o ?g. }
- W2947160970 endingPage "77292" @default.
- W2947160970 startingPage "77277" @default.
- W2947160970 abstract "In fault diagnosis of rotating machinery, the shift in domain distributions caused by working condition fluctuations poses a major obstacle for accurate diagnosis. Due to the lack of domain adaptation ability, the diagnosis performance of existing deep learning-based methods degrades significantly when confronting other unseen working conditions. To address this problem, we develop a cross-domain stacked denoising autoencoders (CD-SDAE) with a new adaptation training strategy. Taking advantages from both domain adaptation and manifold learning, the adaptation training strategy consists of two successive paradigms: 1) unsupervised adaptation pre-training to correct marginal distribution mismatch and 2) semi-supervised manifold regularized fine-tuning to minimize conditional distribution distance between domains. In this way, the marginal distributions between the source and target domains are first matched. Then, on this basis, the conditional distributions can be matched more effectively thus makes the model become more adaptable to the target domain. The CD-SDAE is evaluated on gearbox and engine rolling bearing fault datasets. The experimental results show that CD-SDAE is superior to not only conventional deep learning method but also state-of-the-art deep domain adaptation method in terms of diagnostic accuracy." @default.
- W2947160970 created "2019-06-07" @default.
- W2947160970 creator A5026428761 @default.
- W2947160970 creator A5075171443 @default.
- W2947160970 date "2019-01-01" @default.
- W2947160970 modified "2023-10-11" @default.
- W2947160970 title "A Cross-Domain Stacked Denoising Autoencoders for Rotating Machinery Fault Diagnosis Under Different Working Conditions" @default.
- W2947160970 cites W1985969430 @default.
- W2947160970 cites W1986614398 @default.
- W2947160970 cites W1987164599 @default.
- W2947160970 cites W1989185482 @default.
- W2947160970 cites W1991078647 @default.
- W2947160970 cites W2002106843 @default.
- W2947160970 cites W2003205626 @default.
- W2947160970 cites W2025768430 @default.
- W2947160970 cites W2051896883 @default.
- W2947160970 cites W2073728442 @default.
- W2947160970 cites W2096943734 @default.
- W2947160970 cites W2100664256 @default.
- W2947160970 cites W2115403315 @default.
- W2947160970 cites W2140224582 @default.
- W2947160970 cites W2195063230 @default.
- W2947160970 cites W2219903032 @default.
- W2947160970 cites W2287029277 @default.
- W2947160970 cites W2341914330 @default.
- W2947160970 cites W2404692435 @default.
- W2947160970 cites W2440930599 @default.
- W2947160970 cites W2480364715 @default.
- W2947160970 cites W2485614840 @default.
- W2947160970 cites W2488793338 @default.
- W2947160970 cites W2564938190 @default.
- W2947160970 cites W2565262489 @default.
- W2947160970 cites W2579628011 @default.
- W2947160970 cites W2593479727 @default.
- W2947160970 cites W2601590138 @default.
- W2947160970 cites W2606442203 @default.
- W2947160970 cites W2612554669 @default.
- W2947160970 cites W2619304139 @default.
- W2947160970 cites W2738563279 @default.
- W2947160970 cites W2744686084 @default.
- W2947160970 cites W2766328202 @default.
- W2947160970 cites W2783774496 @default.
- W2947160970 cites W2789571202 @default.
- W2947160970 cites W2792156255 @default.
- W2947160970 cites W2794463555 @default.
- W2947160970 cites W2799162308 @default.
- W2947160970 cites W2800395558 @default.
- W2947160970 cites W2811138152 @default.
- W2947160970 cites W2919115771 @default.
- W2947160970 cites W2963168418 @default.
- W2947160970 cites W2963214104 @default.
- W2947160970 cites W637415930 @default.
- W2947160970 doi "https://doi.org/10.1109/access.2019.2919535" @default.
- W2947160970 hasPublicationYear "2019" @default.
- W2947160970 type Work @default.
- W2947160970 sameAs 2947160970 @default.
- W2947160970 citedByCount "34" @default.
- W2947160970 countsByYear W29471609702019 @default.
- W2947160970 countsByYear W29471609702020 @default.
- W2947160970 countsByYear W29471609702021 @default.
- W2947160970 countsByYear W29471609702022 @default.
- W2947160970 countsByYear W29471609702023 @default.
- W2947160970 crossrefType "journal-article" @default.
- W2947160970 hasAuthorship W2947160970A5026428761 @default.
- W2947160970 hasAuthorship W2947160970A5075171443 @default.
- W2947160970 hasBestOaLocation W29471609701 @default.
- W2947160970 hasConcept C105795698 @default.
- W2947160970 hasConcept C108583219 @default.
- W2947160970 hasConcept C119857082 @default.
- W2947160970 hasConcept C120665830 @default.
- W2947160970 hasConcept C121332964 @default.
- W2947160970 hasConcept C122123141 @default.
- W2947160970 hasConcept C127313418 @default.
- W2947160970 hasConcept C127413603 @default.
- W2947160970 hasConcept C134306372 @default.
- W2947160970 hasConcept C139807058 @default.
- W2947160970 hasConcept C153180895 @default.
- W2947160970 hasConcept C154945302 @default.
- W2947160970 hasConcept C163294075 @default.
- W2947160970 hasConcept C165205528 @default.
- W2947160970 hasConcept C165216359 @default.
- W2947160970 hasConcept C175551986 @default.
- W2947160970 hasConcept C2776434776 @default.
- W2947160970 hasConcept C33923547 @default.
- W2947160970 hasConcept C36503486 @default.
- W2947160970 hasConcept C41008148 @default.
- W2947160970 hasConcept C43555835 @default.
- W2947160970 hasConcept C529865628 @default.
- W2947160970 hasConcept C78519656 @default.
- W2947160970 hasConcept C95623464 @default.
- W2947160970 hasConceptScore W2947160970C105795698 @default.
- W2947160970 hasConceptScore W2947160970C108583219 @default.
- W2947160970 hasConceptScore W2947160970C119857082 @default.
- W2947160970 hasConceptScore W2947160970C120665830 @default.
- W2947160970 hasConceptScore W2947160970C121332964 @default.
- W2947160970 hasConceptScore W2947160970C122123141 @default.
- W2947160970 hasConceptScore W2947160970C127313418 @default.
- W2947160970 hasConceptScore W2947160970C127413603 @default.