Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947320005> ?p ?o ?g. }
- W2947320005 endingPage "190" @default.
- W2947320005 startingPage "179" @default.
- W2947320005 abstract "Noises and outliers commonly exist in dynamical systems because of sensor disturbations or extreme dynamics. Thus, the robustness and generalization capacity are of vital importance for system modeling. In this paper, the robust manifold broad learning system(RM-BLS) is proposed for system modeling and large-scale noisy chaotic time series prediction. Manifold embedding is utilized for chaotic system evolution discovery. The manifold representation is randomly corrupted by perturbations while the features not related to low-dimensional manifold embedding are discarded by feature selection. It leads to a robust learning paradigm and achieves better generalization performance. We also develop an efficient solution for Stiefel manifold optimization, in which the orthogonal constraints are maintained by Cayley transformation and curvilinear search algorithm. Furthermore, we discuss the common thoughts between random perturbation approximation and other mainstream regularization methods. We also prove the equivalence between perturbations to manifold embedding and Tikhonov regularization. Simulation results on large-scale noisy chaotic time series prediction illustrates the robustness and generalization performance of our method." @default.
- W2947320005 created "2019-06-07" @default.
- W2947320005 creator A5015696755 @default.
- W2947320005 creator A5032636287 @default.
- W2947320005 creator A5034166765 @default.
- W2947320005 creator A5045789169 @default.
- W2947320005 date "2019-09-01" @default.
- W2947320005 modified "2023-10-18" @default.
- W2947320005 title "Robust manifold broad learning system for large-scale noisy chaotic time series prediction: A perturbation perspective" @default.
- W2947320005 cites W1034159276 @default.
- W2947320005 cites W1855879034 @default.
- W2947320005 cites W1964175594 @default.
- W2947320005 cites W1973260559 @default.
- W2947320005 cites W1973666623 @default.
- W2947320005 cites W1986096622 @default.
- W2947320005 cites W1989089570 @default.
- W2947320005 cites W1993261349 @default.
- W2947320005 cites W2042948547 @default.
- W2947320005 cites W2074477564 @default.
- W2947320005 cites W2080991705 @default.
- W2947320005 cites W2086953401 @default.
- W2947320005 cites W2089582861 @default.
- W2947320005 cites W2094419284 @default.
- W2947320005 cites W2095223629 @default.
- W2947320005 cites W2096290418 @default.
- W2947320005 cites W2111406701 @default.
- W2947320005 cites W2152907901 @default.
- W2947320005 cites W2162316550 @default.
- W2947320005 cites W2163922914 @default.
- W2947320005 cites W2172893397 @default.
- W2947320005 cites W2173025977 @default.
- W2947320005 cites W2339611261 @default.
- W2947320005 cites W2472842823 @default.
- W2947320005 cites W2511113797 @default.
- W2947320005 cites W2560385169 @default.
- W2947320005 cites W2562369931 @default.
- W2947320005 cites W2569381866 @default.
- W2947320005 cites W2695737732 @default.
- W2947320005 cites W2736488765 @default.
- W2947320005 cites W2738226240 @default.
- W2947320005 cites W2746514453 @default.
- W2947320005 cites W2766541071 @default.
- W2947320005 cites W2797372563 @default.
- W2947320005 cites W2797476900 @default.
- W2947320005 cites W2806149340 @default.
- W2947320005 cites W2890126432 @default.
- W2947320005 cites W2890706287 @default.
- W2947320005 cites W2962834855 @default.
- W2947320005 cites W2962866211 @default.
- W2947320005 cites W2963190567 @default.
- W2947320005 cites W2963627453 @default.
- W2947320005 cites W3148981562 @default.
- W2947320005 cites W4244393449 @default.
- W2947320005 cites W4255501777 @default.
- W2947320005 cites W4292363360 @default.
- W2947320005 cites W607853484 @default.
- W2947320005 doi "https://doi.org/10.1016/j.neunet.2019.05.009" @default.
- W2947320005 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31170577" @default.
- W2947320005 hasPublicationYear "2019" @default.
- W2947320005 type Work @default.
- W2947320005 sameAs 2947320005 @default.
- W2947320005 citedByCount "31" @default.
- W2947320005 countsByYear W29473200052019 @default.
- W2947320005 countsByYear W29473200052020 @default.
- W2947320005 countsByYear W29473200052021 @default.
- W2947320005 countsByYear W29473200052022 @default.
- W2947320005 countsByYear W29473200052023 @default.
- W2947320005 crossrefType "journal-article" @default.
- W2947320005 hasAuthorship W2947320005A5015696755 @default.
- W2947320005 hasAuthorship W2947320005A5032636287 @default.
- W2947320005 hasAuthorship W2947320005A5034166765 @default.
- W2947320005 hasAuthorship W2947320005A5045789169 @default.
- W2947320005 hasConcept C104317684 @default.
- W2947320005 hasConcept C11413529 @default.
- W2947320005 hasConcept C121332964 @default.
- W2947320005 hasConcept C134306372 @default.
- W2947320005 hasConcept C135252773 @default.
- W2947320005 hasConcept C151876577 @default.
- W2947320005 hasConcept C152442038 @default.
- W2947320005 hasConcept C153120616 @default.
- W2947320005 hasConcept C154945302 @default.
- W2947320005 hasConcept C185592680 @default.
- W2947320005 hasConcept C2524010 @default.
- W2947320005 hasConcept C2777052490 @default.
- W2947320005 hasConcept C28826006 @default.
- W2947320005 hasConcept C33923547 @default.
- W2947320005 hasConcept C41008148 @default.
- W2947320005 hasConcept C41608201 @default.
- W2947320005 hasConcept C55493867 @default.
- W2947320005 hasConcept C612670 @default.
- W2947320005 hasConcept C62520636 @default.
- W2947320005 hasConcept C63479239 @default.
- W2947320005 hasConcept C70518039 @default.
- W2947320005 hasConcept C79379906 @default.
- W2947320005 hasConceptScore W2947320005C104317684 @default.
- W2947320005 hasConceptScore W2947320005C11413529 @default.
- W2947320005 hasConceptScore W2947320005C121332964 @default.
- W2947320005 hasConceptScore W2947320005C134306372 @default.