Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947336722> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2947336722 abstract "This thesis treats different aspects of nonlinear optimal control problems under uncertainty in which the uncertain parameters are modeled probabilistically. We apply the polynomial chaos expansion, a well known method for uncertainty quantification, to obtain deterministic surrogate optimal control problems. Their size and complexity pose a computational challenge for traditional optimal control methods. For nonlinear optimal control, this difficulty is increased because a high polynomial expansion order is necessary to derive meaningful statements about the nonlinear and asymmetric uncertainty propagation. To this end, we develop an adaptive optimization strategy which refines the approximation quality separately for each state variable using suitable error estimates. The benefits are twofold: we obtain additional means for solution verification and reduce the computational effort for finding an approximate solution with increased precision. The algorithmic contribution is complemented by a convergence proof showing that the solutions of the optimal control problem after application of the polynomial chaos method approach the correct solution for increasing expansion orders.To obtain a further speed-up in solution time, we develop a structure-exploiting algorithm for the fast derivative generation. The algorithm makes use of the special structure induced by the spectral projection to reuse model derivatives and exploit sparsity information leading to a fast automatic sensitivity generation. This greatly reduces the computational effort of Newton-type methods for the solution of the resulting high-dimensional surrogate problem.Another challenging topic of this thesis are optimal control problems with chance constraints, which form a probabilistic robustification of the solution that is neither too conservative nor underestimates the risk. We develop an efficient method based on the polynomial chaos expansion to compute nonlinear propagations of the reachable sets of all uncertain states and show how it can be used to approximate individual and joint chance constraints. The strength of the obtained estimator in guaranteeing a satisfaction level is supported by providing an a-priori error estimate with exponential convergence in case of sufficiently smooth solutions.All methods developed in this thesis are readily implemented in state-of-the-art direct methods to optimal control. Their performance and suitability for optimal control problems is evaluated in a numerical case study on two nonlinear real-world problems using Monte Carlo simulations to illustrate the effectsof the propagated uncertainty on the optimal control solution. As an industrial application, we solve a challenging optimal control problem modeling an adsorption refrigeration system under uncertainty." @default.
- W2947336722 created "2019-06-07" @default.
- W2947336722 creator A5081726191 @default.
- W2947336722 date "2018-01-01" @default.
- W2947336722 modified "2023-09-27" @default.
- W2947336722 title "Fast numerical methods for robust nonlinear optimalcontrol under uncertainty" @default.
- W2947336722 doi "https://doi.org/10.11588/heidok.00024212" @default.
- W2947336722 hasPublicationYear "2018" @default.
- W2947336722 type Work @default.
- W2947336722 sameAs 2947336722 @default.
- W2947336722 citedByCount "0" @default.
- W2947336722 crossrefType "dissertation" @default.
- W2947336722 hasAuthorship W2947336722A5081726191 @default.
- W2947336722 hasConcept C105795698 @default.
- W2947336722 hasConcept C11413529 @default.
- W2947336722 hasConcept C121332964 @default.
- W2947336722 hasConcept C126255220 @default.
- W2947336722 hasConcept C134306372 @default.
- W2947336722 hasConcept C158622935 @default.
- W2947336722 hasConcept C162324750 @default.
- W2947336722 hasConcept C179799912 @default.
- W2947336722 hasConcept C19499675 @default.
- W2947336722 hasConcept C197656079 @default.
- W2947336722 hasConcept C2777303404 @default.
- W2947336722 hasConcept C32230216 @default.
- W2947336722 hasConcept C33923547 @default.
- W2947336722 hasConcept C41008148 @default.
- W2947336722 hasConcept C49937458 @default.
- W2947336722 hasConcept C50522688 @default.
- W2947336722 hasConcept C62520636 @default.
- W2947336722 hasConcept C90119067 @default.
- W2947336722 hasConcept C91575142 @default.
- W2947336722 hasConceptScore W2947336722C105795698 @default.
- W2947336722 hasConceptScore W2947336722C11413529 @default.
- W2947336722 hasConceptScore W2947336722C121332964 @default.
- W2947336722 hasConceptScore W2947336722C126255220 @default.
- W2947336722 hasConceptScore W2947336722C134306372 @default.
- W2947336722 hasConceptScore W2947336722C158622935 @default.
- W2947336722 hasConceptScore W2947336722C162324750 @default.
- W2947336722 hasConceptScore W2947336722C179799912 @default.
- W2947336722 hasConceptScore W2947336722C19499675 @default.
- W2947336722 hasConceptScore W2947336722C197656079 @default.
- W2947336722 hasConceptScore W2947336722C2777303404 @default.
- W2947336722 hasConceptScore W2947336722C32230216 @default.
- W2947336722 hasConceptScore W2947336722C33923547 @default.
- W2947336722 hasConceptScore W2947336722C41008148 @default.
- W2947336722 hasConceptScore W2947336722C49937458 @default.
- W2947336722 hasConceptScore W2947336722C50522688 @default.
- W2947336722 hasConceptScore W2947336722C62520636 @default.
- W2947336722 hasConceptScore W2947336722C90119067 @default.
- W2947336722 hasConceptScore W2947336722C91575142 @default.
- W2947336722 hasLocation W29473367221 @default.
- W2947336722 hasOpenAccess W2947336722 @default.
- W2947336722 hasPrimaryLocation W29473367221 @default.
- W2947336722 hasRelatedWork W1429214046 @default.
- W2947336722 hasRelatedWork W1551180987 @default.
- W2947336722 hasRelatedWork W176366016 @default.
- W2947336722 hasRelatedWork W1964644507 @default.
- W2947336722 hasRelatedWork W2019872637 @default.
- W2947336722 hasRelatedWork W2026927420 @default.
- W2947336722 hasRelatedWork W2122217213 @default.
- W2947336722 hasRelatedWork W2128008719 @default.
- W2947336722 hasRelatedWork W2192870712 @default.
- W2947336722 hasRelatedWork W2342918308 @default.
- W2947336722 hasRelatedWork W2763217718 @default.
- W2947336722 hasRelatedWork W2776386352 @default.
- W2947336722 hasRelatedWork W2800906245 @default.
- W2947336722 hasRelatedWork W2902819843 @default.
- W2947336722 hasRelatedWork W2951027200 @default.
- W2947336722 hasRelatedWork W2975197937 @default.
- W2947336722 hasRelatedWork W2993364885 @default.
- W2947336722 hasRelatedWork W3091385445 @default.
- W2947336722 hasRelatedWork W3126490218 @default.
- W2947336722 hasRelatedWork W596707724 @default.
- W2947336722 isParatext "false" @default.
- W2947336722 isRetracted "false" @default.
- W2947336722 magId "2947336722" @default.
- W2947336722 workType "dissertation" @default.