Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947342498> ?p ?o ?g. }
- W2947342498 endingPage "37" @default.
- W2947342498 startingPage "37" @default.
- W2947342498 abstract "Digital soil maps can be used to depict the ability of soil to fulfill certain functions. Digital maps offer reliable information that can be used in spatial planning programs. Several broad types of data mining approaches through Digital Soil Mapping (DSM) have been tested. The usual approach is to select a model that produces the best validation statistics. However, instead of choosing the best model, it is possible to combine all models realizing their strengths and weaknesses. We applied seven different techniques for the prediction of soil classes based on 194 sites located in Isfahan region. The mapping exercise aims to produce a soil class map that can be used for better understanding and management of soil resources. The models used in this study include Multinomial Logistic Regression (MnLR), Artificial Neural Networks (ANN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Bayesian Networks (BN), and Sparse Multinomial Logistic Regression (SMnLR). Two ensemble models based on majority votes (Ensemble.1) and MnLR (Ensemble.2) were implemented for integrating the optimal aspects of the individual techniques. The overall accuracy (OA), Cohen's kappa coefficient index (κ) and the area under the curve (AUC) were calculated based on 10-fold-cross validation with 100 repeats at four soil taxonomic levels. The Ensemble.2 model was able to achieve larger OA, κ coefficient and AUC compared to the best performing individual model (i.e., RF). Results of the ensemble model showed a decreasing trend in OA from Order (0.90) to Subgroup (0.53). This was also the case for the κ statistic, which was the largest for the Order (0.66) and smallest for the Subgroup (0.43). Same decrease was observed for AUC from Order (0.81) to Subgroup (0.67). The improvement in κ was substantial (43 to 60%) at all soil taxonomic levels, except the Order level. We conclude that the application of the ensemble model using the MnLR was optimal, as it provided a highly accurate prediction for all soil taxonomic levels over and above the individual models. It also used information from all models, and thus this method can be recommended for improved soil class modelling. Soil maps created by this DSM approach showed soils that are prone to degradation and need to be carefully managed and conserved to avoid further land degradation." @default.
- W2947342498 created "2019-06-07" @default.
- W2947342498 creator A5024770531 @default.
- W2947342498 creator A5046177232 @default.
- W2947342498 creator A5051455406 @default.
- W2947342498 creator A5055611566 @default.
- W2947342498 creator A5056756521 @default.
- W2947342498 creator A5073429327 @default.
- W2947342498 date "2019-05-28" @default.
- W2947342498 modified "2023-10-17" @default.
- W2947342498 title "Digital Mapping of Soil Classes Using Ensemble of Models in Isfahan Region, Iran" @default.
- W2947342498 cites W1058055990 @default.
- W2947342498 cites W1151068121 @default.
- W2947342498 cites W1780185704 @default.
- W2947342498 cites W1971770471 @default.
- W2947342498 cites W1981531537 @default.
- W2947342498 cites W1984828485 @default.
- W2947342498 cites W1994645958 @default.
- W2947342498 cites W2002108424 @default.
- W2947342498 cites W2027160099 @default.
- W2947342498 cites W2028203833 @default.
- W2947342498 cites W2031259520 @default.
- W2947342498 cites W2035586622 @default.
- W2947342498 cites W2054155874 @default.
- W2947342498 cites W2054325787 @default.
- W2947342498 cites W2076563147 @default.
- W2947342498 cites W2076819299 @default.
- W2947342498 cites W2084028661 @default.
- W2947342498 cites W2085049715 @default.
- W2947342498 cites W2087070363 @default.
- W2947342498 cites W2087146736 @default.
- W2947342498 cites W2089097786 @default.
- W2947342498 cites W2089568739 @default.
- W2947342498 cites W2097745317 @default.
- W2947342498 cites W2099351601 @default.
- W2947342498 cites W2116395914 @default.
- W2947342498 cites W2120240539 @default.
- W2947342498 cites W2150579376 @default.
- W2947342498 cites W2161020850 @default.
- W2947342498 cites W2162829784 @default.
- W2947342498 cites W2165895388 @default.
- W2947342498 cites W2186294614 @default.
- W2947342498 cites W2188083314 @default.
- W2947342498 cites W2205382713 @default.
- W2947342498 cites W2424724326 @default.
- W2947342498 cites W2590668453 @default.
- W2947342498 cites W2597412011 @default.
- W2947342498 cites W2767801680 @default.
- W2947342498 cites W2889701190 @default.
- W2947342498 cites W2911964244 @default.
- W2947342498 cites W2912358801 @default.
- W2947342498 cites W294925975 @default.
- W2947342498 cites W4211056572 @default.
- W2947342498 cites W608962888 @default.
- W2947342498 doi "https://doi.org/10.3390/soilsystems3020037" @default.
- W2947342498 hasPublicationYear "2019" @default.
- W2947342498 type Work @default.
- W2947342498 sameAs 2947342498 @default.
- W2947342498 citedByCount "26" @default.
- W2947342498 countsByYear W29473424982019 @default.
- W2947342498 countsByYear W29473424982020 @default.
- W2947342498 countsByYear W29473424982021 @default.
- W2947342498 countsByYear W29473424982022 @default.
- W2947342498 countsByYear W29473424982023 @default.
- W2947342498 crossrefType "journal-article" @default.
- W2947342498 hasAuthorship W2947342498A5024770531 @default.
- W2947342498 hasAuthorship W2947342498A5046177232 @default.
- W2947342498 hasAuthorship W2947342498A5051455406 @default.
- W2947342498 hasAuthorship W2947342498A5055611566 @default.
- W2947342498 hasAuthorship W2947342498A5056756521 @default.
- W2947342498 hasAuthorship W2947342498A5073429327 @default.
- W2947342498 hasBestOaLocation W29473424981 @default.
- W2947342498 hasConcept C104471815 @default.
- W2947342498 hasConcept C105795698 @default.
- W2947342498 hasConcept C107673813 @default.
- W2947342498 hasConcept C117568660 @default.
- W2947342498 hasConcept C119857082 @default.
- W2947342498 hasConcept C119898033 @default.
- W2947342498 hasConcept C12267149 @default.
- W2947342498 hasConcept C124101348 @default.
- W2947342498 hasConcept C151956035 @default.
- W2947342498 hasConcept C153180895 @default.
- W2947342498 hasConcept C154945302 @default.
- W2947342498 hasConcept C159390177 @default.
- W2947342498 hasConcept C159750122 @default.
- W2947342498 hasConcept C163864269 @default.
- W2947342498 hasConcept C169258074 @default.
- W2947342498 hasConcept C192065140 @default.
- W2947342498 hasConcept C33923547 @default.
- W2947342498 hasConcept C39432304 @default.
- W2947342498 hasConcept C41008148 @default.
- W2947342498 hasConcept C45942800 @default.
- W2947342498 hasConcept C71864017 @default.
- W2947342498 hasConcept C84525736 @default.
- W2947342498 hasConceptScore W2947342498C104471815 @default.
- W2947342498 hasConceptScore W2947342498C105795698 @default.
- W2947342498 hasConceptScore W2947342498C107673813 @default.
- W2947342498 hasConceptScore W2947342498C117568660 @default.