Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947343772> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2947343772 abstract "The needs and demands of the community for the ease of accessing information encourage the increasing use of social media tools such as Twitter to share, deliver and search for information needed. The number of large tweets shared by Twitter users every second, making the collection of tweets can be processed into useful information using sentiment analysis. The need for a large number of tweets to produce information encourages the need for a classifier model that can perform the analysis process quickly and provide accurate results. One algorithm that is currently popular and is widely used today to build classifier models is Deep Learning. Sentiment analysis in this research was conducted on English-language tweets on the topic Turkey Crisis 2018 by using one of the Deep Learning algorithms, Convolutional Neural Network (CNN). The resulting of CNN classifier model will then be compared with the Naive Bayes Classifier (NBC) classifier model to find out which classifier model can provide better accuracy in sentiment analysis. The research methods that will be carried out in this research are data retrieval, pre-processing, model design and training, model testing and visualization. The results obtained from this research indicate that the CNN classifier model produces an accuracy of 0.88 or 88% while the NBC classifier model produces an accuracy of 0.78 or 78% in the testing phase of the data test. Based on these results it can be concluded that the classifier model with Deep Learning algorithm produces better accuracy in sentiment analysis compared to the Naive Bayes classifier model." @default.
- W2947343772 created "2019-06-07" @default.
- W2947343772 creator A5008172199 @default.
- W2947343772 creator A5011975899 @default.
- W2947343772 creator A5015479196 @default.
- W2947343772 creator A5023227121 @default.
- W2947343772 date "2019-01-01" @default.
- W2947343772 modified "2023-09-26" @default.
- W2947343772 title "Comparison of Accuracy between Convolutional Neural Networks and Naïve Bayes Classifiers in Sentiment Analysis on Twitter" @default.
- W2947343772 cites W1832693441 @default.
- W2947343772 cites W2189477049 @default.
- W2947343772 cites W2581082771 @default.
- W2947343772 cites W2787153192 @default.
- W2947343772 cites W2891595725 @default.
- W2947343772 doi "https://doi.org/10.14569/ijacsa.2019.0100511" @default.
- W2947343772 hasPublicationYear "2019" @default.
- W2947343772 type Work @default.
- W2947343772 sameAs 2947343772 @default.
- W2947343772 citedByCount "2" @default.
- W2947343772 countsByYear W29473437722021 @default.
- W2947343772 crossrefType "journal-article" @default.
- W2947343772 hasAuthorship W2947343772A5008172199 @default.
- W2947343772 hasAuthorship W2947343772A5011975899 @default.
- W2947343772 hasAuthorship W2947343772A5015479196 @default.
- W2947343772 hasAuthorship W2947343772A5023227121 @default.
- W2947343772 hasBestOaLocation W29473437721 @default.
- W2947343772 hasConcept C108583219 @default.
- W2947343772 hasConcept C119857082 @default.
- W2947343772 hasConcept C12267149 @default.
- W2947343772 hasConcept C136764020 @default.
- W2947343772 hasConcept C154945302 @default.
- W2947343772 hasConcept C185207860 @default.
- W2947343772 hasConcept C41008148 @default.
- W2947343772 hasConcept C518677369 @default.
- W2947343772 hasConcept C52001869 @default.
- W2947343772 hasConcept C66402592 @default.
- W2947343772 hasConcept C81363708 @default.
- W2947343772 hasConcept C95623464 @default.
- W2947343772 hasConceptScore W2947343772C108583219 @default.
- W2947343772 hasConceptScore W2947343772C119857082 @default.
- W2947343772 hasConceptScore W2947343772C12267149 @default.
- W2947343772 hasConceptScore W2947343772C136764020 @default.
- W2947343772 hasConceptScore W2947343772C154945302 @default.
- W2947343772 hasConceptScore W2947343772C185207860 @default.
- W2947343772 hasConceptScore W2947343772C41008148 @default.
- W2947343772 hasConceptScore W2947343772C518677369 @default.
- W2947343772 hasConceptScore W2947343772C52001869 @default.
- W2947343772 hasConceptScore W2947343772C66402592 @default.
- W2947343772 hasConceptScore W2947343772C81363708 @default.
- W2947343772 hasConceptScore W2947343772C95623464 @default.
- W2947343772 hasLocation W29473437721 @default.
- W2947343772 hasOpenAccess W2947343772 @default.
- W2947343772 hasPrimaryLocation W29473437721 @default.
- W2947343772 hasRelatedWork W2084779923 @default.
- W2947343772 hasRelatedWork W2131815513 @default.
- W2947343772 hasRelatedWork W2623427976 @default.
- W2947343772 hasRelatedWork W2780177025 @default.
- W2947343772 hasRelatedWork W2920938200 @default.
- W2947343772 hasRelatedWork W2947343772 @default.
- W2947343772 hasRelatedWork W3153922349 @default.
- W2947343772 hasRelatedWork W4254256218 @default.
- W2947343772 hasRelatedWork W4281382123 @default.
- W2947343772 hasRelatedWork W4282973848 @default.
- W2947343772 isParatext "false" @default.
- W2947343772 isRetracted "false" @default.
- W2947343772 magId "2947343772" @default.
- W2947343772 workType "article" @default.