Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947348575> ?p ?o ?g. }
- W2947348575 abstract "Computer graphic images (CGI) can be manufactured very similar to natural images (NI) by state-of-the-art algorithms in computer graphic filed. Thus, there are various identification algorithms proposed to detect CGI. However, the manipulation is complicated and difficult for an ultimate CGI against the forensic algorithms. Further, the forensics on CGI and NI made achievements in the different aspects with the encouragement of deep learning. Though the generated CGI can achieve high quality automatically by generative adversarial networks (GAN), CGI generation based on GAN is difficult to ensure that it cannot be detected by forensics. In this paper, we propose a brief and effective architecture based on GAN for preventing the generated images being detected under the forensics on CGI and NI. The adapted characteristics will make the CGI generated by GAN fools the detector and keep the end-to-end generation mode of GAN." @default.
- W2947348575 created "2019-06-07" @default.
- W2947348575 creator A5004402130 @default.
- W2947348575 creator A5011131365 @default.
- W2947348575 creator A5037180684 @default.
- W2947348575 creator A5050592883 @default.
- W2947348575 creator A5069678874 @default.
- W2947348575 date "2019-01-01" @default.
- W2947348575 modified "2023-09-23" @default.
- W2947348575 title "An anti-forensic scheme on computer graphic images and natural images using generative adversarial networks" @default.
- W2947348575 cites W1834627138 @default.
- W2947348575 cites W199051323 @default.
- W2947348575 cites W1998113266 @default.
- W2947348575 cites W2009130368 @default.
- W2947348575 cites W2009437133 @default.
- W2947348575 cites W2031357951 @default.
- W2947348575 cites W2099471712 @default.
- W2947348575 cites W2106663508 @default.
- W2947348575 cites W2134396947 @default.
- W2947348575 cites W2148685281 @default.
- W2947348575 cites W2159811049 @default.
- W2947348575 cites W2173520492 @default.
- W2947348575 cites W2194775991 @default.
- W2947348575 cites W2292366347 @default.
- W2947348575 cites W2322622188 @default.
- W2947348575 cites W2514123796 @default.
- W2947348575 cites W2605121773 @default.
- W2947348575 cites W2605135824 @default.
- W2947348575 cites W2606697050 @default.
- W2947348575 cites W2725990940 @default.
- W2947348575 cites W2749193951 @default.
- W2947348575 cites W2751471013 @default.
- W2947348575 cites W2769310763 @default.
- W2947348575 cites W2774322245 @default.
- W2947348575 cites W2791386893 @default.
- W2947348575 cites W2799785652 @default.
- W2947348575 cites W2802292638 @default.
- W2947348575 cites W2889115060 @default.
- W2947348575 cites W2902302451 @default.
- W2947348575 cites W2914227139 @default.
- W2947348575 cites W2915463112 @default.
- W2947348575 cites W2920729409 @default.
- W2947348575 cites W2921111008 @default.
- W2947348575 cites W2953106684 @default.
- W2947348575 doi "https://doi.org/10.3934/mbe.2019248" @default.
- W2947348575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31499697" @default.
- W2947348575 hasPublicationYear "2019" @default.
- W2947348575 type Work @default.
- W2947348575 sameAs 2947348575 @default.
- W2947348575 citedByCount "1" @default.
- W2947348575 countsByYear W29473485752021 @default.
- W2947348575 crossrefType "journal-article" @default.
- W2947348575 hasAuthorship W2947348575A5004402130 @default.
- W2947348575 hasAuthorship W2947348575A5011131365 @default.
- W2947348575 hasAuthorship W2947348575A5037180684 @default.
- W2947348575 hasAuthorship W2947348575A5050592883 @default.
- W2947348575 hasAuthorship W2947348575A5069678874 @default.
- W2947348575 hasBestOaLocation W29473485751 @default.
- W2947348575 hasConcept C115961682 @default.
- W2947348575 hasConcept C116834253 @default.
- W2947348575 hasConcept C134306372 @default.
- W2947348575 hasConcept C153180895 @default.
- W2947348575 hasConcept C154945302 @default.
- W2947348575 hasConcept C2988773926 @default.
- W2947348575 hasConcept C31972630 @default.
- W2947348575 hasConcept C33923547 @default.
- W2947348575 hasConcept C37736160 @default.
- W2947348575 hasConcept C39890363 @default.
- W2947348575 hasConcept C41008148 @default.
- W2947348575 hasConcept C59822182 @default.
- W2947348575 hasConcept C76155785 @default.
- W2947348575 hasConcept C77618280 @default.
- W2947348575 hasConcept C86803240 @default.
- W2947348575 hasConcept C94915269 @default.
- W2947348575 hasConceptScore W2947348575C115961682 @default.
- W2947348575 hasConceptScore W2947348575C116834253 @default.
- W2947348575 hasConceptScore W2947348575C134306372 @default.
- W2947348575 hasConceptScore W2947348575C153180895 @default.
- W2947348575 hasConceptScore W2947348575C154945302 @default.
- W2947348575 hasConceptScore W2947348575C2988773926 @default.
- W2947348575 hasConceptScore W2947348575C31972630 @default.
- W2947348575 hasConceptScore W2947348575C33923547 @default.
- W2947348575 hasConceptScore W2947348575C37736160 @default.
- W2947348575 hasConceptScore W2947348575C39890363 @default.
- W2947348575 hasConceptScore W2947348575C41008148 @default.
- W2947348575 hasConceptScore W2947348575C59822182 @default.
- W2947348575 hasConceptScore W2947348575C76155785 @default.
- W2947348575 hasConceptScore W2947348575C77618280 @default.
- W2947348575 hasConceptScore W2947348575C86803240 @default.
- W2947348575 hasConceptScore W2947348575C94915269 @default.
- W2947348575 hasLocation W29473485751 @default.
- W2947348575 hasLocation W29473485752 @default.
- W2947348575 hasOpenAccess W2947348575 @default.
- W2947348575 hasPrimaryLocation W29473485751 @default.
- W2947348575 hasRelatedWork W2982455199 @default.
- W2947348575 hasRelatedWork W2998996837 @default.
- W2947348575 hasRelatedWork W3037184111 @default.
- W2947348575 hasRelatedWork W3156291593 @default.
- W2947348575 hasRelatedWork W3161307186 @default.
- W2947348575 hasRelatedWork W3165231707 @default.