Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947371353> ?p ?o ?g. }
- W2947371353 abstract "A non-intrusive method is presented for measuring different fluidic properties in a microfluidic chip by optically monitoring the flow of droplets. A neural network is used to extract the desired information from the images of the droplets. We demonstrate the method in two applications: measurement of the concentration of each component of a water/alcohol mixture, and measurement of the flow rate of the same mixture. A large number of droplet images are recorded and used to train deep neural networks (DNN) to predict the flow rate or the concentration. It is shown that this method can be used to quantify the concentrations of each component with a 0.5% accuracy and the flow rate with a resolution of 0.05 ml/h. The proposed method can in principle be used to measure other properties of the fluid such as surface tension and viscosity." @default.
- W2947371353 created "2019-06-07" @default.
- W2947371353 creator A5012394744 @default.
- W2947371353 creator A5033691074 @default.
- W2947371353 creator A5048152891 @default.
- W2947371353 creator A5072068977 @default.
- W2947371353 date "2019-05-31" @default.
- W2947371353 modified "2023-10-13" @default.
- W2947371353 title "Learning from droplet flows in microfluidic channels using deep neural networks" @default.
- W2947371353 cites W1910197149 @default.
- W2947371353 cites W1926708839 @default.
- W2947371353 cites W1970558185 @default.
- W2947371353 cites W1976742742 @default.
- W2947371353 cites W1980876403 @default.
- W2947371353 cites W1987840790 @default.
- W2947371353 cites W1987919377 @default.
- W2947371353 cites W2006855213 @default.
- W2947371353 cites W2022461189 @default.
- W2947371353 cites W2023106046 @default.
- W2947371353 cites W2026502947 @default.
- W2947371353 cites W2030052026 @default.
- W2947371353 cites W2039523400 @default.
- W2947371353 cites W2057813310 @default.
- W2947371353 cites W2064803625 @default.
- W2947371353 cites W2073169008 @default.
- W2947371353 cites W2077935441 @default.
- W2947371353 cites W2088035775 @default.
- W2947371353 cites W2093180750 @default.
- W2947371353 cites W2093190868 @default.
- W2947371353 cites W2100009214 @default.
- W2947371353 cites W2108880123 @default.
- W2947371353 cites W2110077298 @default.
- W2947371353 cites W2118511465 @default.
- W2947371353 cites W2149511293 @default.
- W2947371353 cites W2149881082 @default.
- W2947371353 cites W2153685703 @default.
- W2947371353 cites W2154166372 @default.
- W2947371353 cites W2219522269 @default.
- W2947371353 cites W2261134999 @default.
- W2947371353 cites W2302517508 @default.
- W2947371353 cites W2336649281 @default.
- W2947371353 cites W2339298250 @default.
- W2947371353 cites W2531648969 @default.
- W2947371353 cites W2548342201 @default.
- W2947371353 cites W2555261222 @default.
- W2947371353 cites W2555335304 @default.
- W2947371353 cites W2562133542 @default.
- W2947371353 cites W258580738 @default.
- W2947371353 cites W2591643114 @default.
- W2947371353 cites W2606711273 @default.
- W2947371353 cites W2617378503 @default.
- W2947371353 cites W2756393603 @default.
- W2947371353 cites W2769844975 @default.
- W2947371353 cites W2889267767 @default.
- W2947371353 cites W2898436200 @default.
- W2947371353 cites W2919115771 @default.
- W2947371353 cites W2963504849 @default.
- W2947371353 cites W2964027982 @default.
- W2947371353 cites W3003555818 @default.
- W2947371353 cites W3100635040 @default.
- W2947371353 cites W4231335780 @default.
- W2947371353 doi "https://doi.org/10.1038/s41598-019-44556-x" @default.
- W2947371353 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6544611" @default.
- W2947371353 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31148559" @default.
- W2947371353 hasPublicationYear "2019" @default.
- W2947371353 type Work @default.
- W2947371353 sameAs 2947371353 @default.
- W2947371353 citedByCount "38" @default.
- W2947371353 countsByYear W29473713532020 @default.
- W2947371353 countsByYear W29473713532021 @default.
- W2947371353 countsByYear W29473713532022 @default.
- W2947371353 countsByYear W29473713532023 @default.
- W2947371353 crossrefType "journal-article" @default.
- W2947371353 hasAuthorship W2947371353A5012394744 @default.
- W2947371353 hasAuthorship W2947371353A5033691074 @default.
- W2947371353 hasAuthorship W2947371353A5048152891 @default.
- W2947371353 hasAuthorship W2947371353A5072068977 @default.
- W2947371353 hasBestOaLocation W29473713531 @default.
- W2947371353 hasConcept C119599485 @default.
- W2947371353 hasConcept C121332964 @default.
- W2947371353 hasConcept C124101348 @default.
- W2947371353 hasConcept C127172972 @default.
- W2947371353 hasConcept C127413603 @default.
- W2947371353 hasConcept C132651336 @default.
- W2947371353 hasConcept C154945302 @default.
- W2947371353 hasConcept C159985019 @default.
- W2947371353 hasConcept C168167062 @default.
- W2947371353 hasConcept C171250308 @default.
- W2947371353 hasConcept C172120300 @default.
- W2947371353 hasConcept C186060115 @default.
- W2947371353 hasConcept C192562407 @default.
- W2947371353 hasConcept C2780009758 @default.
- W2947371353 hasConcept C38349280 @default.
- W2947371353 hasConcept C41008148 @default.
- W2947371353 hasConcept C50644808 @default.
- W2947371353 hasConcept C57879066 @default.
- W2947371353 hasConcept C8673954 @default.
- W2947371353 hasConcept C86803240 @default.
- W2947371353 hasConcept C8892853 @default.
- W2947371353 hasConcept C97355855 @default.