Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947374785> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2947374785 abstract "Artificial intelligence is a field at the intersection of computer science, mathematics, philosophy and neuroscience. Its core competency lies in shedding light on data intensive fields by generating complex relations amongst data points. Depression is a mental condition which has bemused psychologists due to its eccentric display in each individual. In this paper we peruse various sensory signals and suggest ways by which they can be exploited to effectively capture concealed patterns. Moreover we also review and suggest a number of learning models that can accurately classify and recursively pinpoint the intensity of depression. Citations to biologically inspired models are also made" @default.
- W2947374785 created "2019-06-07" @default.
- W2947374785 creator A5042354251 @default.
- W2947374785 creator A5067483794 @default.
- W2947374785 creator A5073557290 @default.
- W2947374785 creator A5074348353 @default.
- W2947374785 creator A5078116377 @default.
- W2947374785 date "2018-10-01" @default.
- W2947374785 modified "2023-09-23" @default.
- W2947374785 title "Unraveling Depression Using Machine Intelligence" @default.
- W2947374785 cites W2120945046 @default.
- W2947374785 cites W2198052463 @default.
- W2947374785 cites W2735790296 @default.
- W2947374785 cites W2774054212 @default.
- W2947374785 cites W2783018657 @default.
- W2947374785 cites W2886713062 @default.
- W2947374785 cites W2891187402 @default.
- W2947374785 cites W4239510810 @default.
- W2947374785 cites W2605404864 @default.
- W2947374785 doi "https://doi.org/10.1109/cesys.2018.8724031" @default.
- W2947374785 hasPublicationYear "2018" @default.
- W2947374785 type Work @default.
- W2947374785 sameAs 2947374785 @default.
- W2947374785 citedByCount "2" @default.
- W2947374785 countsByYear W29473747852022 @default.
- W2947374785 crossrefType "proceedings-article" @default.
- W2947374785 hasAuthorship W2947374785A5042354251 @default.
- W2947374785 hasAuthorship W2947374785A5067483794 @default.
- W2947374785 hasAuthorship W2947374785A5073557290 @default.
- W2947374785 hasAuthorship W2947374785A5074348353 @default.
- W2947374785 hasAuthorship W2947374785A5078116377 @default.
- W2947374785 hasConcept C139719470 @default.
- W2947374785 hasConcept C154945302 @default.
- W2947374785 hasConcept C162324750 @default.
- W2947374785 hasConcept C2776867660 @default.
- W2947374785 hasConcept C41008148 @default.
- W2947374785 hasConceptScore W2947374785C139719470 @default.
- W2947374785 hasConceptScore W2947374785C154945302 @default.
- W2947374785 hasConceptScore W2947374785C162324750 @default.
- W2947374785 hasConceptScore W2947374785C2776867660 @default.
- W2947374785 hasConceptScore W2947374785C41008148 @default.
- W2947374785 hasLocation W29473747851 @default.
- W2947374785 hasOpenAccess W2947374785 @default.
- W2947374785 hasPrimaryLocation W29473747851 @default.
- W2947374785 hasRelatedWork W2049775471 @default.
- W2947374785 hasRelatedWork W2093578348 @default.
- W2947374785 hasRelatedWork W2350741829 @default.
- W2947374785 hasRelatedWork W2358668433 @default.
- W2947374785 hasRelatedWork W2376932109 @default.
- W2947374785 hasRelatedWork W2382290278 @default.
- W2947374785 hasRelatedWork W2390279801 @default.
- W2947374785 hasRelatedWork W2748952813 @default.
- W2947374785 hasRelatedWork W2899084033 @default.
- W2947374785 hasRelatedWork W3004735627 @default.
- W2947374785 isParatext "false" @default.
- W2947374785 isRetracted "false" @default.
- W2947374785 magId "2947374785" @default.
- W2947374785 workType "article" @default.