Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947377259> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2947377259 abstract "This dissertation consists of two studies that introduce and investigate two Bayesian non/semi-parametric estimation methods for latent growth mixture modeling (LGMM). LGMM is a useful statistical tool for modeling latent classes or unobserved subgroups in longitudinal data analysis. One of the major challenges of fitting an LGMM is deciding on the number of latent classes that exist in the population from which data were collected. In this dissertation, I introduce two non/semi-parametric estimation methods, that is Reversible jump Markov chain Monte Carlo (RJMCMC) and Dirichlet process modeling (DP) for LGMM. Specifically, I examined the estimation performance of these two non/semi-parametric methods along with traditional estimation methods, such as maximum likelihood (ML) and the Bayesian estimation framework. I also investigated some commonly discussed topics within the LGMM context, such as class enumeration and the impact of class separation. In particular, Study 1 examines the ability of RJMCMC, DP, and ML to recover the model parameters, especially the number of classes and class sizes via a simulation study. Simulation results showed that RJMCMC and DP performed comparable to ML and even better under some conditions for some parameters. An empirical example is included in Study 1 as an illustration of how to apply RJMCMC and DP; the example uses an education-related data set and covers how to interpret the results. In Study 2, the investigation is focused on the impact of class separation on class enumeration and model parameter recovery. Specifically, different degrees of class separation and several separation conditions were investigated. The performance of RJMCMC, DP and two Bayesian estimation methods with different prior specifications were examined for the LGMM via a simulation study. Results of Study 2 showed that RJMCMC and DP performed comparable to the Bayesian estimators under different degrees of class separation. Findings of the two studies suggested that RJMCMC and DP can be used as alternatives to traditional ML and Bayesian estimation methods in accurately recovering the number of latent classes for LGMM under most conditions. However, there are added benefits to the use of RJMCMC and DP over the other approaches. Other implications, suggestions for applied researchers, limitations, and future directions are also discussed." @default.
- W2947377259 created "2019-06-07" @default.
- W2947377259 creator A5040033644 @default.
- W2947377259 date "2018-01-01" @default.
- W2947377259 modified "2023-09-23" @default.
- W2947377259 title "Bayesian Non/Semi-Parametric Methods for Latent Growth Mixture Models" @default.
- W2947377259 hasPublicationYear "2018" @default.
- W2947377259 type Work @default.
- W2947377259 sameAs 2947377259 @default.
- W2947377259 citedByCount "0" @default.
- W2947377259 crossrefType "journal-article" @default.
- W2947377259 hasAuthorship W2947377259A5040033644 @default.
- W2947377259 hasConcept C105795698 @default.
- W2947377259 hasConcept C107673813 @default.
- W2947377259 hasConcept C111350023 @default.
- W2947377259 hasConcept C11413529 @default.
- W2947377259 hasConcept C117251300 @default.
- W2947377259 hasConcept C134306372 @default.
- W2947377259 hasConcept C151730666 @default.
- W2947377259 hasConcept C169214877 @default.
- W2947377259 hasConcept C182310444 @default.
- W2947377259 hasConcept C24574437 @default.
- W2947377259 hasConcept C2779343474 @default.
- W2947377259 hasConcept C2780591659 @default.
- W2947377259 hasConcept C28826006 @default.
- W2947377259 hasConcept C33923547 @default.
- W2947377259 hasConcept C41008148 @default.
- W2947377259 hasConcept C61224824 @default.
- W2947377259 hasConcept C86803240 @default.
- W2947377259 hasConceptScore W2947377259C105795698 @default.
- W2947377259 hasConceptScore W2947377259C107673813 @default.
- W2947377259 hasConceptScore W2947377259C111350023 @default.
- W2947377259 hasConceptScore W2947377259C11413529 @default.
- W2947377259 hasConceptScore W2947377259C117251300 @default.
- W2947377259 hasConceptScore W2947377259C134306372 @default.
- W2947377259 hasConceptScore W2947377259C151730666 @default.
- W2947377259 hasConceptScore W2947377259C169214877 @default.
- W2947377259 hasConceptScore W2947377259C182310444 @default.
- W2947377259 hasConceptScore W2947377259C24574437 @default.
- W2947377259 hasConceptScore W2947377259C2779343474 @default.
- W2947377259 hasConceptScore W2947377259C2780591659 @default.
- W2947377259 hasConceptScore W2947377259C28826006 @default.
- W2947377259 hasConceptScore W2947377259C33923547 @default.
- W2947377259 hasConceptScore W2947377259C41008148 @default.
- W2947377259 hasConceptScore W2947377259C61224824 @default.
- W2947377259 hasConceptScore W2947377259C86803240 @default.
- W2947377259 hasLocation W29473772591 @default.
- W2947377259 hasOpenAccess W2947377259 @default.
- W2947377259 hasPrimaryLocation W29473772591 @default.
- W2947377259 hasRelatedWork W115279008 @default.
- W2947377259 hasRelatedWork W1514627977 @default.
- W2947377259 hasRelatedWork W2156474521 @default.
- W2947377259 hasRelatedWork W2182376237 @default.
- W2947377259 hasRelatedWork W2224858857 @default.
- W2947377259 hasRelatedWork W2230281058 @default.
- W2947377259 hasRelatedWork W2260783176 @default.
- W2947377259 hasRelatedWork W2292466958 @default.
- W2947377259 hasRelatedWork W2296798503 @default.
- W2947377259 hasRelatedWork W2603590941 @default.
- W2947377259 hasRelatedWork W2626381514 @default.
- W2947377259 hasRelatedWork W2712681089 @default.
- W2947377259 hasRelatedWork W2757830207 @default.
- W2947377259 hasRelatedWork W2770729853 @default.
- W2947377259 hasRelatedWork W279124179 @default.
- W2947377259 hasRelatedWork W2807853056 @default.
- W2947377259 hasRelatedWork W2950487296 @default.
- W2947377259 hasRelatedWork W2952813155 @default.
- W2947377259 hasRelatedWork W3121250911 @default.
- W2947377259 hasRelatedWork W3202853725 @default.
- W2947377259 isParatext "false" @default.
- W2947377259 isRetracted "false" @default.
- W2947377259 magId "2947377259" @default.
- W2947377259 workType "article" @default.