Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947405323> ?p ?o ?g. }
- W2947405323 abstract "Today, face biometric systems are becoming widely accepted as a standard method for identity authentication in many security settings. For example, their deployment in automated border control gates plays a crucial role in accurate document authentication and reduced traveler flow rates in congested border zones. The proliferation of such systems is further spurred by the advent of portable devices. On the one hand, modern smartphone and tablet cameras have in-built user authentication applications while on the other hand, their displays are being consistently exploited for face spoofing. Similar to biometric systems of other physiological biometric identifiers, face biometric systems have their own unique set of potential vulnerabilities. In this work, these vulnerabilities (presentation attacks) are being explored via a biologically-inspired presentation attack detection model which is termed BIOPAD. Our model employs Gabor features in a feedforward hierarchical structure of layers that progressively process and train from visual information of people's faces, along with their presentation attacks, in the visible and near-infrared spectral regions. BIOPAD's performance is directly compared with other popular biologically-inspired layered models such as the Hierarchical Model And X (HMAX) that applies similar handcrafted features, and Convolutional Neural Networks (CNN) that discover low-level features through stochastic descent training. BIOPAD shows superior performance to both HMAX and CNN in all of the three presentation attack databases examined and these results were consistent in two different classifiers (Support Vector Machine and k-nearest neighbor). In certain cases, our findings have shown that BIOPAD can produce authentication rates with 99% accuracy. Finally, we further introduce a new presentation attack database with visible and near-infrared information for direct comparisons. Overall, BIOPAD's operation, which is to fuse information from different spectral bands at both feature and score levels for the purpose of face presentation attack detection, has never been attempted before with a biologically-inspired algorithm. Obtained detection rates are promising and confirm that near-infrared visual information significantly assists in overcoming presentation attacks." @default.
- W2947405323 created "2019-06-07" @default.
- W2947405323 creator A5021296740 @default.
- W2947405323 creator A5069214034 @default.
- W2947405323 creator A5072370256 @default.
- W2947405323 creator A5081432470 @default.
- W2947405323 date "2019-05-28" @default.
- W2947405323 modified "2023-10-13" @default.
- W2947405323 title "Bio-Inspired Presentation Attack Detection for Face Biometrics" @default.
- W2947405323 cites W1601867506 @default.
- W2947405323 cites W1692023078 @default.
- W2947405323 cites W1828840751 @default.
- W2947405323 cites W1964026607 @default.
- W2947405323 cites W1964365590 @default.
- W2947405323 cites W1966202481 @default.
- W2947405323 cites W1970082170 @default.
- W2947405323 cites W1970520782 @default.
- W2947405323 cites W1979285635 @default.
- W2947405323 cites W1981578346 @default.
- W2947405323 cites W1982209341 @default.
- W2947405323 cites W1998391547 @default.
- W2947405323 cites W1998567523 @default.
- W2947405323 cites W2003092530 @default.
- W2947405323 cites W2004211009 @default.
- W2947405323 cites W2004935805 @default.
- W2947405323 cites W2006500012 @default.
- W2947405323 cites W2013661714 @default.
- W2947405323 cites W2024682746 @default.
- W2947405323 cites W2027650395 @default.
- W2947405323 cites W2029683698 @default.
- W2947405323 cites W2041768607 @default.
- W2947405323 cites W2043375465 @default.
- W2947405323 cites W2063667416 @default.
- W2947405323 cites W2072273451 @default.
- W2947405323 cites W2073942619 @default.
- W2947405323 cites W2081365434 @default.
- W2947405323 cites W2096127742 @default.
- W2947405323 cites W2096223255 @default.
- W2947405323 cites W2106115875 @default.
- W2947405323 cites W2107227001 @default.
- W2947405323 cites W2112796928 @default.
- W2947405323 cites W2113299665 @default.
- W2947405323 cites W2117072267 @default.
- W2947405323 cites W2117731089 @default.
- W2947405323 cites W2119978181 @default.
- W2947405323 cites W2122023903 @default.
- W2947405323 cites W2124952720 @default.
- W2947405323 cites W2127274336 @default.
- W2947405323 cites W2136666231 @default.
- W2947405323 cites W2138100172 @default.
- W2947405323 cites W2142768220 @default.
- W2947405323 cites W2144982973 @default.
- W2947405323 cites W2149194912 @default.
- W2947405323 cites W2151149002 @default.
- W2947405323 cites W2152586002 @default.
- W2947405323 cites W2153777140 @default.
- W2947405323 cites W2156614993 @default.
- W2947405323 cites W2156665020 @default.
- W2947405323 cites W2161126623 @default.
- W2947405323 cites W2162762921 @default.
- W2947405323 cites W2168239064 @default.
- W2947405323 cites W2169720294 @default.
- W2947405323 cites W2256679588 @default.
- W2947405323 cites W2332277843 @default.
- W2947405323 cites W2409050142 @default.
- W2947405323 cites W2554020789 @default.
- W2947405323 cites W2601242043 @default.
- W2947405323 cites W2617869948 @default.
- W2947405323 cites W2618530766 @default.
- W2947405323 cites W2626624520 @default.
- W2947405323 cites W2754376709 @default.
- W2947405323 cites W2767290858 @default.
- W2947405323 cites W2787613668 @default.
- W2947405323 cites W2963538232 @default.
- W2947405323 cites W2963656031 @default.
- W2947405323 cites W4298191902 @default.
- W2947405323 doi "https://doi.org/10.3389/fncom.2019.00034" @default.
- W2947405323 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6546888" @default.
- W2947405323 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31191281" @default.
- W2947405323 hasPublicationYear "2019" @default.
- W2947405323 type Work @default.
- W2947405323 sameAs 2947405323 @default.
- W2947405323 citedByCount "3" @default.
- W2947405323 countsByYear W29474053232020 @default.
- W2947405323 countsByYear W29474053232021 @default.
- W2947405323 countsByYear W29474053232023 @default.
- W2947405323 crossrefType "journal-article" @default.
- W2947405323 hasAuthorship W2947405323A5021296740 @default.
- W2947405323 hasAuthorship W2947405323A5069214034 @default.
- W2947405323 hasAuthorship W2947405323A5072370256 @default.
- W2947405323 hasAuthorship W2947405323A5081432470 @default.
- W2947405323 hasBestOaLocation W29474053231 @default.
- W2947405323 hasConcept C119857082 @default.
- W2947405323 hasConcept C126838900 @default.
- W2947405323 hasConcept C144024400 @default.
- W2947405323 hasConcept C148417208 @default.
- W2947405323 hasConcept C153180895 @default.
- W2947405323 hasConcept C154504017 @default.
- W2947405323 hasConcept C154945302 @default.
- W2947405323 hasConcept C167900197 @default.