Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947451721> ?p ?o ?g. }
- W2947451721 endingPage "1120" @default.
- W2947451721 startingPage "1109" @default.
- W2947451721 abstract "Abstract Motivated by brain connectivity analysis and many other network data applications, we study the problem of estimating covariance and precision matrices and their differences across multiple populations. We propose a common reducing subspace model that leads to substantial dimension reduction and efficient parameter estimation. We explicitly quantify the efficiency gain through an asymptotic analysis. Our method is built upon and further extends a nascent technique, the envelope model, which adopts a generalized sparsity principle. This distinguishes our proposal from most xisting covariance and precision estimation methods that assume element‐wise sparsity. Moreover, unlike most existing solutions, our method can naturally handle both covariance and precision matrices in a unified way, and work with matrix‐valued data. We demonstrate the efficacy of our method through intensive simulations, and illustrate the method with an autism spectrum disorder data analysis." @default.
- W2947451721 created "2019-06-07" @default.
- W2947451721 creator A5006651636 @default.
- W2947451721 creator A5017399049 @default.
- W2947451721 creator A5069286054 @default.
- W2947451721 date "2019-10-04" @default.
- W2947451721 modified "2023-10-15" @default.
- W2947451721 title "Common reducing subspace model and network alternation analysis" @default.
- W2947451721 cites W1532814032 @default.
- W2947451721 cites W1628278711 @default.
- W2947451721 cites W1754350508 @default.
- W2947451721 cites W1968463597 @default.
- W2947451721 cites W1971600338 @default.
- W2947451721 cites W1974147546 @default.
- W2947451721 cites W1981638497 @default.
- W2947451721 cites W1989493069 @default.
- W2947451721 cites W1989727964 @default.
- W2947451721 cites W1998278676 @default.
- W2947451721 cites W1999653836 @default.
- W2947451721 cites W2000185636 @default.
- W2947451721 cites W2001334414 @default.
- W2947451721 cites W2005821483 @default.
- W2947451721 cites W2008573782 @default.
- W2947451721 cites W2021576461 @default.
- W2947451721 cites W2030391580 @default.
- W2947451721 cites W2039448553 @default.
- W2947451721 cites W2039954784 @default.
- W2947451721 cites W2053149514 @default.
- W2947451721 cites W2058046532 @default.
- W2947451721 cites W2081746825 @default.
- W2947451721 cites W2086400086 @default.
- W2947451721 cites W2087618423 @default.
- W2947451721 cites W2087760247 @default.
- W2947451721 cites W2097581234 @default.
- W2947451721 cites W2104482304 @default.
- W2947451721 cites W2110144299 @default.
- W2947451721 cites W2110510087 @default.
- W2947451721 cites W2115161662 @default.
- W2947451721 cites W2116767467 @default.
- W2947451721 cites W2132555912 @default.
- W2947451721 cites W2140651773 @default.
- W2947451721 cites W2146406922 @default.
- W2947451721 cites W2163707651 @default.
- W2947451721 cites W2165009258 @default.
- W2947451721 cites W2167868121 @default.
- W2947451721 cites W2330558670 @default.
- W2947451721 cites W2400707621 @default.
- W2947451721 cites W2509064655 @default.
- W2947451721 cites W2963191122 @default.
- W2947451721 cites W2963686067 @default.
- W2947451721 doi "https://doi.org/10.1111/biom.13099" @default.
- W2947451721 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31140579" @default.
- W2947451721 hasPublicationYear "2019" @default.
- W2947451721 type Work @default.
- W2947451721 sameAs 2947451721 @default.
- W2947451721 citedByCount "9" @default.
- W2947451721 countsByYear W29474517212019 @default.
- W2947451721 countsByYear W29474517212020 @default.
- W2947451721 countsByYear W29474517212021 @default.
- W2947451721 countsByYear W29474517212022 @default.
- W2947451721 countsByYear W29474517212023 @default.
- W2947451721 crossrefType "journal-article" @default.
- W2947451721 hasAuthorship W2947451721A5006651636 @default.
- W2947451721 hasAuthorship W2947451721A5017399049 @default.
- W2947451721 hasAuthorship W2947451721A5069286054 @default.
- W2947451721 hasConcept C105795698 @default.
- W2947451721 hasConcept C111335779 @default.
- W2947451721 hasConcept C11413529 @default.
- W2947451721 hasConcept C124101348 @default.
- W2947451721 hasConcept C126255220 @default.
- W2947451721 hasConcept C138885662 @default.
- W2947451721 hasConcept C154945302 @default.
- W2947451721 hasConcept C178650346 @default.
- W2947451721 hasConcept C180877172 @default.
- W2947451721 hasConcept C185142706 @default.
- W2947451721 hasConcept C202444582 @default.
- W2947451721 hasConcept C2524010 @default.
- W2947451721 hasConcept C26826806 @default.
- W2947451721 hasConcept C32834561 @default.
- W2947451721 hasConcept C33676613 @default.
- W2947451721 hasConcept C33923547 @default.
- W2947451721 hasConcept C41008148 @default.
- W2947451721 hasConcept C41895202 @default.
- W2947451721 hasConcept C70518039 @default.
- W2947451721 hasConceptScore W2947451721C105795698 @default.
- W2947451721 hasConceptScore W2947451721C111335779 @default.
- W2947451721 hasConceptScore W2947451721C11413529 @default.
- W2947451721 hasConceptScore W2947451721C124101348 @default.
- W2947451721 hasConceptScore W2947451721C126255220 @default.
- W2947451721 hasConceptScore W2947451721C138885662 @default.
- W2947451721 hasConceptScore W2947451721C154945302 @default.
- W2947451721 hasConceptScore W2947451721C178650346 @default.
- W2947451721 hasConceptScore W2947451721C180877172 @default.
- W2947451721 hasConceptScore W2947451721C185142706 @default.
- W2947451721 hasConceptScore W2947451721C202444582 @default.
- W2947451721 hasConceptScore W2947451721C2524010 @default.
- W2947451721 hasConceptScore W2947451721C26826806 @default.
- W2947451721 hasConceptScore W2947451721C32834561 @default.