Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947466881> ?p ?o ?g. }
- W2947466881 endingPage "101605" @default.
- W2947466881 startingPage "101605" @default.
- W2947466881 abstract "It is of great significance both in theory and in practice to propose an efficient approach to approximating visual walkability given urban residents' growing leisure needs. Recent advancements in sensing and computing technologies provide new opportunities in this regard. This paper first proposes a conceptual framework for understanding street visual walkability and then employs deep learning technologies to segment and extract physical features from Baidu Map Street View (BMSV) imagery using the case of Shenzhen City in China. Guided by this framework, four indicators are calculated based on the segmented imagery and further integrated into the visual walkability index (VWI), whose reliability is validated through manual interpretation and a subjective scoring experiment. Our results show that deep learning technologies achieve higher accuracy in segmenting street view imagery than the traditional K-means clustering algorithm and support vector machine algorithm. Moreover, the developed VWI is effective to measure visual walkability, and it presents great heterogeneity across streets within Shenzhen. Spatial regression further identifies that significant social inequalities are associated with neighborhood visual walkability. According to the findings, implications and suggestions on planning the healthy city are proposed. The methodological procedure is reduplicative and can be applied to other unfeasible or challenging cases." @default.
- W2947466881 created "2019-06-07" @default.
- W2947466881 creator A5001824020 @default.
- W2947466881 creator A5014301946 @default.
- W2947466881 creator A5041000180 @default.
- W2947466881 creator A5061082958 @default.
- W2947466881 creator A5070860872 @default.
- W2947466881 date "2019-10-01" @default.
- W2947466881 modified "2023-10-01" @default.
- W2947466881 title "Social inequalities in neighborhood visual walkability: Using street view imagery and deep learning technologies to facilitate healthy city planning" @default.
- W2947466881 cites W1806624951 @default.
- W2947466881 cites W1964117129 @default.
- W2947466881 cites W1964375374 @default.
- W2947466881 cites W1967652349 @default.
- W2947466881 cites W1971851820 @default.
- W2947466881 cites W1971885488 @default.
- W2947466881 cites W1986389305 @default.
- W2947466881 cites W1987233492 @default.
- W2947466881 cites W1992066600 @default.
- W2947466881 cites W1997640761 @default.
- W2947466881 cites W2003189768 @default.
- W2947466881 cites W2007591334 @default.
- W2947466881 cites W2007992938 @default.
- W2947466881 cites W2019828136 @default.
- W2947466881 cites W2027808287 @default.
- W2947466881 cites W2030498025 @default.
- W2947466881 cites W2040214250 @default.
- W2947466881 cites W2048400826 @default.
- W2947466881 cites W2049231015 @default.
- W2947466881 cites W2056176693 @default.
- W2947466881 cites W2058842580 @default.
- W2947466881 cites W2061585490 @default.
- W2947466881 cites W2100833844 @default.
- W2947466881 cites W2102850806 @default.
- W2947466881 cites W2103297031 @default.
- W2947466881 cites W2115846140 @default.
- W2947466881 cites W2119616510 @default.
- W2947466881 cites W2127495869 @default.
- W2947466881 cites W2130185468 @default.
- W2947466881 cites W2130546063 @default.
- W2947466881 cites W2131367121 @default.
- W2947466881 cites W2147330627 @default.
- W2947466881 cites W2149689389 @default.
- W2947466881 cites W2160504370 @default.
- W2947466881 cites W2161484264 @default.
- W2947466881 cites W2163220215 @default.
- W2947466881 cites W2218073966 @default.
- W2947466881 cites W2412024995 @default.
- W2947466881 cites W2416949638 @default.
- W2947466881 cites W2425216520 @default.
- W2947466881 cites W2485522290 @default.
- W2947466881 cites W2522454246 @default.
- W2947466881 cites W2522940576 @default.
- W2947466881 cites W2549679444 @default.
- W2947466881 cites W2571473419 @default.
- W2947466881 cites W2588172417 @default.
- W2947466881 cites W2590303772 @default.
- W2947466881 cites W2606485364 @default.
- W2947466881 cites W2621047081 @default.
- W2947466881 cites W2724177178 @default.
- W2947466881 cites W2736332944 @default.
- W2947466881 cites W2753171219 @default.
- W2947466881 cites W2766593933 @default.
- W2947466881 cites W2772282547 @default.
- W2947466881 cites W2789694445 @default.
- W2947466881 cites W2793780140 @default.
- W2947466881 cites W2799471775 @default.
- W2947466881 cites W2890178063 @default.
- W2947466881 cites W2896188610 @default.
- W2947466881 cites W2901564266 @default.
- W2947466881 cites W2908970112 @default.
- W2947466881 cites W2948018644 @default.
- W2947466881 doi "https://doi.org/10.1016/j.scs.2019.101605" @default.
- W2947466881 hasPublicationYear "2019" @default.
- W2947466881 type Work @default.
- W2947466881 sameAs 2947466881 @default.
- W2947466881 citedByCount "115" @default.
- W2947466881 countsByYear W29474668812019 @default.
- W2947466881 countsByYear W29474668812020 @default.
- W2947466881 countsByYear W29474668812021 @default.
- W2947466881 countsByYear W29474668812022 @default.
- W2947466881 countsByYear W29474668812023 @default.
- W2947466881 crossrefType "journal-article" @default.
- W2947466881 hasAuthorship W2947466881A5001824020 @default.
- W2947466881 hasAuthorship W2947466881A5014301946 @default.
- W2947466881 hasAuthorship W2947466881A5041000180 @default.
- W2947466881 hasAuthorship W2947466881A5061082958 @default.
- W2947466881 hasAuthorship W2947466881A5070860872 @default.
- W2947466881 hasConcept C108583219 @default.
- W2947466881 hasConcept C119857082 @default.
- W2947466881 hasConcept C127413603 @default.
- W2947466881 hasConcept C147176958 @default.
- W2947466881 hasConcept C148803439 @default.
- W2947466881 hasConcept C154945302 @default.
- W2947466881 hasConcept C2522767166 @default.
- W2947466881 hasConcept C2780814631 @default.
- W2947466881 hasConcept C41008148 @default.
- W2947466881 hasConcept C49545453 @default.