Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947547535> ?p ?o ?g. }
- W2947547535 endingPage "90" @default.
- W2947547535 startingPage "71" @default.
- W2947547535 abstract "Leaf area index (LAI) and above ground biomass dry matter (DM) are key variables for crop growth monitoring and yield estimation. High prediction accuracies of these parameters are a vital prerequisite for sophisticated yield projections. The aim of the study was to examine the predictive ability of partial least squares regression (PLSR) for LAI and DM retrieval from hyperspectral (EnMAP), superspectral (Sentinel-2), and multispectral (Landsat 8, RapidEye) remote sensing data based on field reflectance measurements. Data was acquired from several crop types (wheat, rye, barley, rape, potato, sugar beet) during field campaigns in three different regions of Germany between the years 2011 and 2014. The field reflectance measurements were resampled to match the different spectral resolutions. Continuous reflectance and resampled data were transformed using five spec-tral pre-processing techniques. Continuous data were used for comparison and served as best case scenario. The predictive ability of the PLSR models for LAI and DM was examined with respect to the spectral resolution and the pre-processing techniques. To verify whether the composition of the data set had an effect on prediction quality, the entire data set (global) was divided in sub data sets (local) with respect to the region of acquisition, the year of acquisition and the crop type. Statistical models of the local data sets were compared with those based on the global data set. Generally, models were assessed with two validation strategies.R2 of the global PLSR models based on continuous field reflectance measurements and independent validation varied from 0.74 to 0.79 (LAI), and from 0.76 to 0.87 (DM). Root mean square error ranged between 0.70 and 0.74 m2 m-2, and between 1.64 and 2.56 t ha-1, respectively. There was no pre-processing method which consistently improved model performance. However, results pointed out that the technique should be chosen with respect to the sensor and the parameter of interest. Models based on hyperspectral information performed generally best. Prediction error increased with the superspectral sensor configuration by only 3% for LAI, and 16% for DM. Multispectral sensor configurations caused the prediction error to rise by up to 22% and 54%, respectively. A stratification into local data sets according to date of acquisition, sampling region and crop type partially increased the prediction performance. Cross-validation yielded higher prediction errors than independent validation in most cases." @default.
- W2947547535 created "2019-06-07" @default.
- W2947547535 creator A5001638396 @default.
- W2947547535 creator A5005345622 @default.
- W2947547535 creator A5071580268 @default.
- W2947547535 creator A5073729936 @default.
- W2947547535 date "2016-01-01" @default.
- W2947547535 modified "2023-09-23" @default.
- W2947547535 title "Evaluation of leaf area index and dry matter predictions for crop growth modelling and yield estimation based on field reflectance measurements" @default.
- W2947547535 cites W1277711400 @default.
- W2947547535 cites W1827322724 @default.
- W2947547535 cites W1970664916 @default.
- W2947547535 cites W1988872612 @default.
- W2947547535 cites W1989261994 @default.
- W2947547535 cites W1995749451 @default.
- W2947547535 cites W1998053851 @default.
- W2947547535 cites W1999838124 @default.
- W2947547535 cites W2001466416 @default.
- W2947547535 cites W2001731209 @default.
- W2947547535 cites W2006356750 @default.
- W2947547535 cites W2007342648 @default.
- W2947547535 cites W2009517474 @default.
- W2947547535 cites W2010979673 @default.
- W2947547535 cites W2017806383 @default.
- W2947547535 cites W2038782607 @default.
- W2947547535 cites W2047134852 @default.
- W2947547535 cites W2054743163 @default.
- W2947547535 cites W2057021477 @default.
- W2947547535 cites W2058312673 @default.
- W2947547535 cites W2060426168 @default.
- W2947547535 cites W2062539127 @default.
- W2947547535 cites W2063041750 @default.
- W2947547535 cites W2067069641 @default.
- W2947547535 cites W2071183539 @default.
- W2947547535 cites W2071454092 @default.
- W2947547535 cites W2073503722 @default.
- W2947547535 cites W2073858026 @default.
- W2947547535 cites W2084770181 @default.
- W2947547535 cites W2089464686 @default.
- W2947547535 cites W2094420085 @default.
- W2947547535 cites W2109606373 @default.
- W2947547535 cites W2116932454 @default.
- W2947547535 cites W2121025745 @default.
- W2947547535 cites W2130963558 @default.
- W2947547535 cites W2132522214 @default.
- W2947547535 cites W2136904244 @default.
- W2947547535 cites W2161815745 @default.
- W2947547535 cites W2166312616 @default.
- W2947547535 cites W2167594433 @default.
- W2947547535 cites W2169390017 @default.
- W2947547535 cites W221493477 @default.
- W2947547535 cites W633320881 @default.
- W2947547535 doi "https://doi.org/10.12760/02-2015-2-06" @default.
- W2947547535 hasPublicationYear "2016" @default.
- W2947547535 type Work @default.
- W2947547535 sameAs 2947547535 @default.
- W2947547535 citedByCount "3" @default.
- W2947547535 countsByYear W29475475352018 @default.
- W2947547535 countsByYear W29475475352019 @default.
- W2947547535 countsByYear W29475475352022 @default.
- W2947547535 crossrefType "journal-article" @default.
- W2947547535 hasAuthorship W2947547535A5001638396 @default.
- W2947547535 hasAuthorship W2947547535A5005345622 @default.
- W2947547535 hasAuthorship W2947547535A5071580268 @default.
- W2947547535 hasAuthorship W2947547535A5073729936 @default.
- W2947547535 hasConcept C105795698 @default.
- W2947547535 hasConcept C139945424 @default.
- W2947547535 hasConcept C159078339 @default.
- W2947547535 hasConcept C173163844 @default.
- W2947547535 hasConcept C205649164 @default.
- W2947547535 hasConcept C22354355 @default.
- W2947547535 hasConcept C25989453 @default.
- W2947547535 hasConcept C33923547 @default.
- W2947547535 hasConcept C39432304 @default.
- W2947547535 hasConcept C58489278 @default.
- W2947547535 hasConcept C62649853 @default.
- W2947547535 hasConcept C6557445 @default.
- W2947547535 hasConcept C86803240 @default.
- W2947547535 hasConceptScore W2947547535C105795698 @default.
- W2947547535 hasConceptScore W2947547535C139945424 @default.
- W2947547535 hasConceptScore W2947547535C159078339 @default.
- W2947547535 hasConceptScore W2947547535C173163844 @default.
- W2947547535 hasConceptScore W2947547535C205649164 @default.
- W2947547535 hasConceptScore W2947547535C22354355 @default.
- W2947547535 hasConceptScore W2947547535C25989453 @default.
- W2947547535 hasConceptScore W2947547535C33923547 @default.
- W2947547535 hasConceptScore W2947547535C39432304 @default.
- W2947547535 hasConceptScore W2947547535C58489278 @default.
- W2947547535 hasConceptScore W2947547535C62649853 @default.
- W2947547535 hasConceptScore W2947547535C6557445 @default.
- W2947547535 hasConceptScore W2947547535C86803240 @default.
- W2947547535 hasIssue "2" @default.
- W2947547535 hasLocation W29475475351 @default.
- W2947547535 hasOpenAccess W2947547535 @default.
- W2947547535 hasPrimaryLocation W29475475351 @default.
- W2947547535 hasRelatedWork W2012679176 @default.
- W2947547535 hasRelatedWork W2054671950 @default.
- W2947547535 hasRelatedWork W2063041750 @default.