Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947549751> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2947549751 endingPage "155003" @default.
- W2947549751 startingPage "155003" @default.
- W2947549751 abstract "Artifacts caused by patient breathing and movement during PET data acquisition affect image quality. Respiratory gating is commonly used to gate the list-mode PET data into multiple bins over a respiratory cycle. Non-rigid registration of respiratory-gated PET images can reduce motion artifacts and preserve count statistics, but it is time consuming. In this work, we propose an unsupervised non-rigid image registration framework using deep learning for motion correction. Our network uses a differentiable spatial transformer layer to warp the moving image to the fixed image and uses a stacked structure for deformation field refinement. Estimated deformation fields were incorporated into an iterative image reconstruction algorithm to perform motion compensated PET image reconstruction. We validated the proposed method using simulation and clinical data and implemented an iterative image registration approach for comparison. Motion compensated reconstructions were compared with ungated images. Our simulation study showed that the motion compensated methods can generate images with sharp boundaries and reveal more details in the heart region compared with the ungated image. The resulting normalized root mean square error (NRMS) was 24.3 ± 1.7% for the deep learning based motion correction, 31.1 ± 1.4% for the iterative registration based motion correction, and 41.9 ± 2.0% for ungated reconstruction. The proposed deep learning based motion correction reduced the bias compared with the ungated image without increasing the noise level and outperformed the iterative registration based method. In the real data study, both motion compensated images provided higher lesion contrast and sharper liver boundaries than the ungated image and had lower noise than the reference gate image. The contrast of the proposed method based on the deep neural network was higher than the ungated image and iterative registration method at any matched noise level." @default.
- W2947549751 created "2019-06-07" @default.
- W2947549751 creator A5004655343 @default.
- W2947549751 creator A5010507422 @default.
- W2947549751 creator A5010514255 @default.
- W2947549751 creator A5036957881 @default.
- W2947549751 creator A5062955030 @default.
- W2947549751 date "2020-07-30" @default.
- W2947549751 modified "2023-09-23" @default.
- W2947549751 title "Motion correction of respiratory-gated PET images using deep learning based image registration framework" @default.
- W2947549751 cites W1532845070 @default.
- W2947549751 cites W1968941901 @default.
- W2947549751 cites W1983281817 @default.
- W2947549751 cites W1985106196 @default.
- W2947549751 cites W1999263719 @default.
- W2947549751 cites W2009903851 @default.
- W2947549751 cites W2101333585 @default.
- W2947549751 cites W2115685949 @default.
- W2947549751 cites W2144145187 @default.
- W2947549751 cites W2152683426 @default.
- W2947549751 cites W2463950291 @default.
- W2947549751 cites W2529068459 @default.
- W2947549751 cites W2762130327 @default.
- W2947549751 cites W2786528432 @default.
- W2947549751 cites W2963904328 @default.
- W2947549751 doi "https://doi.org/10.1088/1361-6560/ab8688" @default.
- W2947549751 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7446936" @default.
- W2947549751 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32244230" @default.
- W2947549751 hasPublicationYear "2020" @default.
- W2947549751 type Work @default.
- W2947549751 sameAs 2947549751 @default.
- W2947549751 citedByCount "29" @default.
- W2947549751 countsByYear W29475497512020 @default.
- W2947549751 countsByYear W29475497512021 @default.
- W2947549751 countsByYear W29475497512022 @default.
- W2947549751 countsByYear W29475497512023 @default.
- W2947549751 crossrefType "journal-article" @default.
- W2947549751 hasAuthorship W2947549751A5004655343 @default.
- W2947549751 hasAuthorship W2947549751A5010507422 @default.
- W2947549751 hasAuthorship W2947549751A5010514255 @default.
- W2947549751 hasAuthorship W2947549751A5036957881 @default.
- W2947549751 hasAuthorship W2947549751A5062955030 @default.
- W2947549751 hasBestOaLocation W29475497512 @default.
- W2947549751 hasConcept C10161872 @default.
- W2947549751 hasConcept C11413529 @default.
- W2947549751 hasConcept C115961682 @default.
- W2947549751 hasConcept C141379421 @default.
- W2947549751 hasConcept C153180895 @default.
- W2947549751 hasConcept C154945302 @default.
- W2947549751 hasConcept C155512373 @default.
- W2947549751 hasConcept C166704113 @default.
- W2947549751 hasConcept C31972630 @default.
- W2947549751 hasConcept C41008148 @default.
- W2947549751 hasConcept C55020928 @default.
- W2947549751 hasConceptScore W2947549751C10161872 @default.
- W2947549751 hasConceptScore W2947549751C11413529 @default.
- W2947549751 hasConceptScore W2947549751C115961682 @default.
- W2947549751 hasConceptScore W2947549751C141379421 @default.
- W2947549751 hasConceptScore W2947549751C153180895 @default.
- W2947549751 hasConceptScore W2947549751C154945302 @default.
- W2947549751 hasConceptScore W2947549751C155512373 @default.
- W2947549751 hasConceptScore W2947549751C166704113 @default.
- W2947549751 hasConceptScore W2947549751C31972630 @default.
- W2947549751 hasConceptScore W2947549751C41008148 @default.
- W2947549751 hasConceptScore W2947549751C55020928 @default.
- W2947549751 hasFunder F4320337363 @default.
- W2947549751 hasIssue "15" @default.
- W2947549751 hasLocation W29475497511 @default.
- W2947549751 hasLocation W29475497512 @default.
- W2947549751 hasOpenAccess W2947549751 @default.
- W2947549751 hasPrimaryLocation W29475497511 @default.
- W2947549751 hasRelatedWork W1482467098 @default.
- W2947549751 hasRelatedWork W2009466720 @default.
- W2947549751 hasRelatedWork W2011443206 @default.
- W2947549751 hasRelatedWork W2016725368 @default.
- W2947549751 hasRelatedWork W2064234899 @default.
- W2947549751 hasRelatedWork W2068702946 @default.
- W2947549751 hasRelatedWork W2112456472 @default.
- W2947549751 hasRelatedWork W2125070361 @default.
- W2947549751 hasRelatedWork W3163375306 @default.
- W2947549751 hasRelatedWork W3185738386 @default.
- W2947549751 hasVolume "65" @default.
- W2947549751 isParatext "false" @default.
- W2947549751 isRetracted "false" @default.
- W2947549751 magId "2947549751" @default.
- W2947549751 workType "article" @default.