Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947556306> ?p ?o ?g. }
- W2947556306 endingPage "230" @default.
- W2947556306 startingPage "221" @default.
- W2947556306 abstract "Lung lobe segmentation in chest CT has been used for the analysis of lung functions and surgical planning. However, accurate lobe segmentation is difficult as 80% of patients have incomplete and/or fake fissures. Furthermore, lung diseases such as chronic obstructive pulmonary disease (COPD) can increase the difficulty of differentiating the lobar fissures. Lobar fissures have similar intensities to those of the vessels and airway wall, which could lead to segmentation error in automated segmentation. In this study, a fully automated lung lobe segmentation method with 3D U-Net was developed and validated with internal and external datasets. The volumetric chest CT scans of 196 normal and mild-to-moderate COPD patients from three centers were obtained. Each scan was segmented using a conventional image processing method and manually corrected by an expert thoracic radiologist to create gold standards. The lobe regions in the CT images were then segmented using a 3D U-Net architecture with a deep convolutional neural network (CNN) using separate training, validation, and test datasets. In addition, 40 independent external CT images were used to evaluate the model. The segmentation results for both the conventional and deep learning methods were compared quantitatively to the gold standards using four accuracy metrics including the Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), mean surface distance (MSD), and Hausdorff surface distance (HSD). In internal validation, the segmentation method achieved high accuracy for the DSC, JSC, MSD, and HSD (0.97 ± 0.02, 0.94 ± 0.03, 0.69 ± 0.36, and 17.12 ± 11.07, respectively). In external validation, high accuracy was also obtained for the DSC, JSC, MSD, and HSD (0.96 ± 0.02, 0.92 ± 0.04, 1.31 ± 0.56, and 27.89 ± 7.50, respectively). This method took 6.49 ± 1.19 s and 8.61 ± 1.08 s for lobe segmentation of the left and right lungs, respectively. Although various automatic lung lobe segmentation methods have been developed, it is difficult to develop a robust segmentation method. However, the deep learning–based 3D U-Net method showed reasonable segmentation accuracy and computational time. In addition, this method could be adapted and applied to severe lung diseases in a clinical workflow." @default.
- W2947556306 created "2019-06-07" @default.
- W2947556306 creator A5004946653 @default.
- W2947556306 creator A5006695326 @default.
- W2947556306 creator A5015108317 @default.
- W2947556306 creator A5016475473 @default.
- W2947556306 creator A5028436330 @default.
- W2947556306 creator A5052987611 @default.
- W2947556306 creator A5065230178 @default.
- W2947556306 creator A5078217765 @default.
- W2947556306 creator A5091396312 @default.
- W2947556306 date "2019-05-31" @default.
- W2947556306 modified "2023-10-17" @default.
- W2947556306 title "Fully Automated Lung Lobe Segmentation in Volumetric Chest CT with 3D U-Net: Validation with Intra- and Extra-Datasets" @default.
- W2947556306 cites W1903029394 @default.
- W2947556306 cites W1966847100 @default.
- W2947556306 cites W1980804565 @default.
- W2947556306 cites W1984391260 @default.
- W2947556306 cites W2009643355 @default.
- W2947556306 cites W2041995828 @default.
- W2947556306 cites W2045616259 @default.
- W2947556306 cites W2051694134 @default.
- W2947556306 cites W2071207540 @default.
- W2947556306 cites W2089337998 @default.
- W2947556306 cites W2095905764 @default.
- W2947556306 cites W2113238819 @default.
- W2947556306 cites W2117739901 @default.
- W2947556306 cites W2126945795 @default.
- W2947556306 cites W2131012824 @default.
- W2947556306 cites W2154225763 @default.
- W2947556306 cites W2416914730 @default.
- W2947556306 cites W2464708700 @default.
- W2947556306 cites W2963282853 @default.
- W2947556306 doi "https://doi.org/10.1007/s10278-019-00223-1" @default.
- W2947556306 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7064651" @default.
- W2947556306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31152273" @default.
- W2947556306 hasPublicationYear "2019" @default.
- W2947556306 type Work @default.
- W2947556306 sameAs 2947556306 @default.
- W2947556306 citedByCount "58" @default.
- W2947556306 countsByYear W29475563062019 @default.
- W2947556306 countsByYear W29475563062020 @default.
- W2947556306 countsByYear W29475563062021 @default.
- W2947556306 countsByYear W29475563062022 @default.
- W2947556306 countsByYear W29475563062023 @default.
- W2947556306 crossrefType "journal-article" @default.
- W2947556306 hasAuthorship W2947556306A5004946653 @default.
- W2947556306 hasAuthorship W2947556306A5006695326 @default.
- W2947556306 hasAuthorship W2947556306A5015108317 @default.
- W2947556306 hasAuthorship W2947556306A5016475473 @default.
- W2947556306 hasAuthorship W2947556306A5028436330 @default.
- W2947556306 hasAuthorship W2947556306A5052987611 @default.
- W2947556306 hasAuthorship W2947556306A5065230178 @default.
- W2947556306 hasAuthorship W2947556306A5078217765 @default.
- W2947556306 hasAuthorship W2947556306A5091396312 @default.
- W2947556306 hasBestOaLocation W29475563061 @default.
- W2947556306 hasConcept C103278499 @default.
- W2947556306 hasConcept C115961682 @default.
- W2947556306 hasConcept C124504099 @default.
- W2947556306 hasConcept C126322002 @default.
- W2947556306 hasConcept C126838900 @default.
- W2947556306 hasConcept C141898687 @default.
- W2947556306 hasConcept C142724271 @default.
- W2947556306 hasConcept C153180895 @default.
- W2947556306 hasConcept C154945302 @default.
- W2947556306 hasConcept C163892561 @default.
- W2947556306 hasConcept C203519979 @default.
- W2947556306 hasConcept C2777714996 @default.
- W2947556306 hasConcept C2777876421 @default.
- W2947556306 hasConcept C41008148 @default.
- W2947556306 hasConcept C71924100 @default.
- W2947556306 hasConcept C81363708 @default.
- W2947556306 hasConcept C89600930 @default.
- W2947556306 hasConceptScore W2947556306C103278499 @default.
- W2947556306 hasConceptScore W2947556306C115961682 @default.
- W2947556306 hasConceptScore W2947556306C124504099 @default.
- W2947556306 hasConceptScore W2947556306C126322002 @default.
- W2947556306 hasConceptScore W2947556306C126838900 @default.
- W2947556306 hasConceptScore W2947556306C141898687 @default.
- W2947556306 hasConceptScore W2947556306C142724271 @default.
- W2947556306 hasConceptScore W2947556306C153180895 @default.
- W2947556306 hasConceptScore W2947556306C154945302 @default.
- W2947556306 hasConceptScore W2947556306C163892561 @default.
- W2947556306 hasConceptScore W2947556306C203519979 @default.
- W2947556306 hasConceptScore W2947556306C2777714996 @default.
- W2947556306 hasConceptScore W2947556306C2777876421 @default.
- W2947556306 hasConceptScore W2947556306C41008148 @default.
- W2947556306 hasConceptScore W2947556306C71924100 @default.
- W2947556306 hasConceptScore W2947556306C81363708 @default.
- W2947556306 hasConceptScore W2947556306C89600930 @default.
- W2947556306 hasIssue "1" @default.
- W2947556306 hasLocation W29475563061 @default.
- W2947556306 hasLocation W29475563062 @default.
- W2947556306 hasLocation W29475563063 @default.
- W2947556306 hasOpenAccess W2947556306 @default.
- W2947556306 hasPrimaryLocation W29475563061 @default.
- W2947556306 hasRelatedWork W2766422710 @default.
- W2947556306 hasRelatedWork W2953570019 @default.