Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947576801> ?p ?o ?g. }
- W2947576801 endingPage "372" @default.
- W2947576801 startingPage "363" @default.
- W2947576801 abstract "This paper presents the technological measures currently being developed at institutes and vehicle research centres dealing with forefront road identification. In this case, road identification corresponds with the surface irregularities and road surface type, which are evaluated by laser scanning and image analysis. Real-time adaptation, adaptation in advance and system external informing are stated as sequential generations of vehicle suspension and active braking systems where road identification is significantly important. Active and semi-active suspensions with their adaptation technologies for comfort and road holding characteristics are analysed. Also, an active braking system such as Anti-lock Braking System (ABS) and Autonomous Emergency Braking (AEB) have been considered as very sensitive to the road friction state. Artificial intelligence methods of deep learning have been presented as a promising image analysis method for classification of 12 different road surface types. Concluding the achieved benefit of road identification for traffic safety improvement is presented with reference to analysed research reports and assumptions made after the initial evaluation." @default.
- W2947576801 created "2019-06-07" @default.
- W2947576801 creator A5001406123 @default.
- W2947576801 creator A5077697910 @default.
- W2947576801 creator A5080490753 @default.
- W2947576801 date "2019-05-27" @default.
- W2947576801 modified "2023-09-23" @default.
- W2947576801 title "TECHNOLOGICAL MEASURES OF FOREFRONT ROAD IDENTIFICATION FOR VEHICLE COMFORT AND SAFETY IMPROVEMENT" @default.
- W2947576801 cites W1156733901 @default.
- W2947576801 cites W1604398873 @default.
- W2947576801 cites W1921093919 @default.
- W2947576801 cites W1966595312 @default.
- W2947576801 cites W1976331014 @default.
- W2947576801 cites W1981289438 @default.
- W2947576801 cites W1995719692 @default.
- W2947576801 cites W2014825632 @default.
- W2947576801 cites W2055154032 @default.
- W2947576801 cites W2058581879 @default.
- W2947576801 cites W2061003506 @default.
- W2947576801 cites W2073801867 @default.
- W2947576801 cites W2082922837 @default.
- W2947576801 cites W2088258744 @default.
- W2947576801 cites W2121829365 @default.
- W2947576801 cites W2144430036 @default.
- W2947576801 cites W2148840793 @default.
- W2947576801 cites W2158383033 @default.
- W2947576801 cites W2166623637 @default.
- W2947576801 cites W2279913904 @default.
- W2947576801 cites W2511514492 @default.
- W2947576801 cites W2522567000 @default.
- W2947576801 cites W2525167484 @default.
- W2947576801 cites W2526806101 @default.
- W2947576801 cites W2530091840 @default.
- W2947576801 cites W2541401702 @default.
- W2947576801 cites W2568614973 @default.
- W2947576801 cites W2578114686 @default.
- W2947576801 cites W2578786213 @default.
- W2947576801 cites W2744192460 @default.
- W2947576801 cites W2745163340 @default.
- W2947576801 cites W2775624490 @default.
- W2947576801 cites W2795023265 @default.
- W2947576801 cites W2798302089 @default.
- W2947576801 cites W2884877436 @default.
- W2947576801 cites W2886078189 @default.
- W2947576801 cites W2896332805 @default.
- W2947576801 cites W2897475915 @default.
- W2947576801 cites W2900116334 @default.
- W2947576801 cites W2962762260 @default.
- W2947576801 cites W4299300541 @default.
- W2947576801 cites W2897184872 @default.
- W2947576801 doi "https://doi.org/10.3846/transport.2019.10372" @default.
- W2947576801 hasPublicationYear "2019" @default.
- W2947576801 type Work @default.
- W2947576801 sameAs 2947576801 @default.
- W2947576801 citedByCount "11" @default.
- W2947576801 countsByYear W29475768012019 @default.
- W2947576801 countsByYear W29475768012020 @default.
- W2947576801 countsByYear W29475768012021 @default.
- W2947576801 countsByYear W29475768012022 @default.
- W2947576801 countsByYear W29475768012023 @default.
- W2947576801 crossrefType "journal-article" @default.
- W2947576801 hasAuthorship W2947576801A5001406123 @default.
- W2947576801 hasAuthorship W2947576801A5077697910 @default.
- W2947576801 hasAuthorship W2947576801A5080490753 @default.
- W2947576801 hasBestOaLocation W29475768011 @default.
- W2947576801 hasConcept C105341887 @default.
- W2947576801 hasConcept C116834253 @default.
- W2947576801 hasConcept C120665830 @default.
- W2947576801 hasConcept C121332964 @default.
- W2947576801 hasConcept C127413603 @default.
- W2947576801 hasConcept C127757376 @default.
- W2947576801 hasConcept C139807058 @default.
- W2947576801 hasConcept C147176958 @default.
- W2947576801 hasConcept C171146098 @default.
- W2947576801 hasConcept C202444582 @default.
- W2947576801 hasConcept C22212356 @default.
- W2947576801 hasConcept C2780042925 @default.
- W2947576801 hasConcept C2780999251 @default.
- W2947576801 hasConcept C2988389982 @default.
- W2947576801 hasConcept C33923547 @default.
- W2947576801 hasConcept C41008148 @default.
- W2947576801 hasConcept C5961521 @default.
- W2947576801 hasConcept C59822182 @default.
- W2947576801 hasConcept C86803240 @default.
- W2947576801 hasConceptScore W2947576801C105341887 @default.
- W2947576801 hasConceptScore W2947576801C116834253 @default.
- W2947576801 hasConceptScore W2947576801C120665830 @default.
- W2947576801 hasConceptScore W2947576801C121332964 @default.
- W2947576801 hasConceptScore W2947576801C127413603 @default.
- W2947576801 hasConceptScore W2947576801C127757376 @default.
- W2947576801 hasConceptScore W2947576801C139807058 @default.
- W2947576801 hasConceptScore W2947576801C147176958 @default.
- W2947576801 hasConceptScore W2947576801C171146098 @default.
- W2947576801 hasConceptScore W2947576801C202444582 @default.
- W2947576801 hasConceptScore W2947576801C22212356 @default.
- W2947576801 hasConceptScore W2947576801C2780042925 @default.
- W2947576801 hasConceptScore W2947576801C2780999251 @default.
- W2947576801 hasConceptScore W2947576801C2988389982 @default.