Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947589645> ?p ?o ?g. }
- W2947589645 endingPage "716" @default.
- W2947589645 startingPage "716" @default.
- W2947589645 abstract "Multilevel thresholding is a very active research field in image segmentation, and has been successfully used in various applications. However, the computational time will increase exponentially as the number of thresholds increases, and for color images which contain more information this is even worse. To overcome the drawback while maintaining segmentation accuracy, a modified version of dragonfly algorithm (DA) with opposition-based learning (OBLDA) for color image segmentation is proposed in this paper. The opposition-based learning (OBL) strategy simultaneously considers the current solution and the opposite solution, which are symmetrical in the search space. With the introduction of OBL, the proposed algorithm has a faster convergence speed and more balanced exploration–exploitation compared with the original DA. In order to clearly demonstrate the outstanding performance of the OBLDA, the proposed method is compared with seven state-of-the-art meta-heuristic algorithms, through experiments on 10 test images. The optimal threshold values are calculated by the maximization of between-class variance and Kapur’s entropy. Meanwhile, some indicators, including peak signal to noise ratio (PSNR), feature similarity index (FSIM), structure similarity index (SSIM), the average fitness values, standard deviation (STD), and computation time are used as evaluation criteria in the experiments. The promising results reveal that proposed method has the advantages of high accuracy and remarkable stability. Wilcoxon’s rank sum test and Friedman test are also performed to verify the superiority of OBLDA in a statistical way. Furthermore, various satellite images are also included for robustness testing. In conclusion, the OBLDA algorithm is a feasible and effective method for multilevel thresholding color image segmentation." @default.
- W2947589645 created "2019-06-07" @default.
- W2947589645 creator A5006242246 @default.
- W2947589645 creator A5031223376 @default.
- W2947589645 creator A5083911815 @default.
- W2947589645 date "2019-05-27" @default.
- W2947589645 modified "2023-09-26" @default.
- W2947589645 title "Dragonfly Algorithm with Opposition-Based Learning for Multilevel Thresholding Color Image Segmentation" @default.
- W2947589645 cites W1965118480 @default.
- W2947589645 cites W1969351979 @default.
- W2947589645 cites W2006052557 @default.
- W2947589645 cites W2054131729 @default.
- W2947589645 cites W2083970667 @default.
- W2947589645 cites W2095379941 @default.
- W2947589645 cites W2099300064 @default.
- W2947589645 cites W2120627761 @default.
- W2947589645 cites W2133059825 @default.
- W2947589645 cites W2133665775 @default.
- W2947589645 cites W2155451907 @default.
- W2947589645 cites W2232317135 @default.
- W2947589645 cites W2324349273 @default.
- W2947589645 cites W2404258624 @default.
- W2947589645 cites W2473822106 @default.
- W2947589645 cites W2508032853 @default.
- W2947589645 cites W2518981743 @default.
- W2947589645 cites W2542281754 @default.
- W2947589645 cites W2556422448 @default.
- W2947589645 cites W2568536335 @default.
- W2947589645 cites W2589233518 @default.
- W2947589645 cites W2605810061 @default.
- W2947589645 cites W2606234828 @default.
- W2947589645 cites W2606879267 @default.
- W2947589645 cites W2606997908 @default.
- W2947589645 cites W2616699888 @default.
- W2947589645 cites W2618241468 @default.
- W2947589645 cites W2626919545 @default.
- W2947589645 cites W2738900493 @default.
- W2947589645 cites W2745838971 @default.
- W2947589645 cites W2749682969 @default.
- W2947589645 cites W2760225670 @default.
- W2947589645 cites W2762670012 @default.
- W2947589645 cites W2768772380 @default.
- W2947589645 cites W2775977688 @default.
- W2947589645 cites W2789246122 @default.
- W2947589645 cites W2792648952 @default.
- W2947589645 cites W2801588621 @default.
- W2947589645 cites W2803696563 @default.
- W2947589645 cites W2808223626 @default.
- W2947589645 cites W2887769939 @default.
- W2947589645 cites W2889134669 @default.
- W2947589645 cites W2891428319 @default.
- W2947589645 cites W2891728624 @default.
- W2947589645 cites W2897855835 @default.
- W2947589645 cites W2900875525 @default.
- W2947589645 cites W2906280468 @default.
- W2947589645 cites W2911625692 @default.
- W2947589645 cites W2914139557 @default.
- W2947589645 cites W2945641879 @default.
- W2947589645 cites W2964181763 @default.
- W2947589645 cites W414544266 @default.
- W2947589645 cites W4241727697 @default.
- W2947589645 doi "https://doi.org/10.3390/sym11050716" @default.
- W2947589645 hasPublicationYear "2019" @default.
- W2947589645 type Work @default.
- W2947589645 sameAs 2947589645 @default.
- W2947589645 citedByCount "23" @default.
- W2947589645 countsByYear W29475896452019 @default.
- W2947589645 countsByYear W29475896452020 @default.
- W2947589645 countsByYear W29475896452021 @default.
- W2947589645 countsByYear W29475896452022 @default.
- W2947589645 countsByYear W29475896452023 @default.
- W2947589645 crossrefType "journal-article" @default.
- W2947589645 hasAuthorship W2947589645A5006242246 @default.
- W2947589645 hasAuthorship W2947589645A5031223376 @default.
- W2947589645 hasAuthorship W2947589645A5083911815 @default.
- W2947589645 hasBestOaLocation W29475896451 @default.
- W2947589645 hasConcept C105795698 @default.
- W2947589645 hasConcept C11413529 @default.
- W2947589645 hasConcept C115961682 @default.
- W2947589645 hasConcept C124504099 @default.
- W2947589645 hasConcept C153180895 @default.
- W2947589645 hasConcept C154945302 @default.
- W2947589645 hasConcept C160710788 @default.
- W2947589645 hasConcept C191178318 @default.
- W2947589645 hasConcept C33923547 @default.
- W2947589645 hasConcept C41008148 @default.
- W2947589645 hasConcept C87007009 @default.
- W2947589645 hasConcept C89600930 @default.
- W2947589645 hasConceptScore W2947589645C105795698 @default.
- W2947589645 hasConceptScore W2947589645C11413529 @default.
- W2947589645 hasConceptScore W2947589645C115961682 @default.
- W2947589645 hasConceptScore W2947589645C124504099 @default.
- W2947589645 hasConceptScore W2947589645C153180895 @default.
- W2947589645 hasConceptScore W2947589645C154945302 @default.
- W2947589645 hasConceptScore W2947589645C160710788 @default.
- W2947589645 hasConceptScore W2947589645C191178318 @default.
- W2947589645 hasConceptScore W2947589645C33923547 @default.
- W2947589645 hasConceptScore W2947589645C41008148 @default.