Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947607572> ?p ?o ?g. }
- W2947607572 abstract "This paper presents a novel approach to learn and detect distinctive regions on 3D shapes. Unlike previous works, which require labeled data, our method is unsupervised. We conduct the analysis on point sets sampled from 3D shapes, then formulate and train a deep neural network for an unsupervised shape clustering task to learn local and global features for distinguishing shapes with respect to a given shape set. To drive the network to learn in an unsupervised manner, we design a clustering-based nonparametric softmax classifier with an iterative re-clustering of shapes, and an adapted contrastive loss for enhancing the feature embedding quality and stabilizing the learning process. By then, we encourage the network to learn the point distinctiveness on the input shapes. We extensively evaluate various aspects of our approach and present its applications for distinctiveness-guided shape retrieval, sampling, and view selection in 3D scenes." @default.
- W2947607572 created "2019-06-07" @default.
- W2947607572 creator A5012581106 @default.
- W2947607572 creator A5022856212 @default.
- W2947607572 creator A5032708386 @default.
- W2947607572 creator A5036688260 @default.
- W2947607572 creator A5053334802 @default.
- W2947607572 date "2019-05-05" @default.
- W2947607572 modified "2023-09-23" @default.
- W2947607572 title "Unsupervised Detection of Distinctive Regions on 3D Shapes" @default.
- W2947607572 cites W1522301498 @default.
- W2947607572 cites W1590510366 @default.
- W2947607572 cites W1821462560 @default.
- W2947607572 cites W1849277567 @default.
- W2947607572 cites W1920022804 @default.
- W2947607572 cites W2010209818 @default.
- W2947607572 cites W2031878977 @default.
- W2947607572 cites W2033832873 @default.
- W2947607572 cites W2049017883 @default.
- W2947607572 cites W2055132753 @default.
- W2947607572 cites W2063513338 @default.
- W2947607572 cites W2073459066 @default.
- W2947607572 cites W2099789128 @default.
- W2947607572 cites W2116323031 @default.
- W2947607572 cites W2117183049 @default.
- W2947607572 cites W2124561101 @default.
- W2947607572 cites W2132303710 @default.
- W2947607572 cites W2132914434 @default.
- W2947607572 cites W2134756023 @default.
- W2947607572 cites W2135674549 @default.
- W2947607572 cites W2138621090 @default.
- W2947607572 cites W2139468722 @default.
- W2947607572 cites W2145185417 @default.
- W2947607572 cites W2151132226 @default.
- W2947607572 cites W2154278348 @default.
- W2947607572 cites W2221121938 @default.
- W2947607572 cites W2235901111 @default.
- W2947607572 cites W2295107390 @default.
- W2947607572 cites W2295382923 @default.
- W2947607572 cites W2323776918 @default.
- W2947607572 cites W2520774990 @default.
- W2947607572 cites W2560609797 @default.
- W2947607572 cites W2594633041 @default.
- W2947607572 cites W2605409611 @default.
- W2947607572 cites W2776207810 @default.
- W2947607572 cites W2785760873 @default.
- W2947607572 cites W2788158258 @default.
- W2947607572 cites W2795374598 @default.
- W2947607572 cites W2796426482 @default.
- W2947607572 cites W2798777114 @default.
- W2947607572 cites W2798991696 @default.
- W2947607572 cites W2808920083 @default.
- W2947607572 cites W2884154111 @default.
- W2947607572 cites W2884585870 @default.
- W2947607572 cites W2887997457 @default.
- W2947607572 cites W2894798093 @default.
- W2947607572 cites W2902302021 @default.
- W2947607572 cites W2903044162 @default.
- W2947607572 cites W2904174163 @default.
- W2947607572 cites W2944828972 @default.
- W2947607572 cites W2953384591 @default.
- W2947607572 cites W2962858109 @default.
- W2947607572 cites W2963053547 @default.
- W2947607572 cites W2963121255 @default.
- W2947607572 cites W2963158438 @default.
- W2947607572 cites W2963264709 @default.
- W2947607572 cites W2964036919 @default.
- W2947607572 cites W2971155163 @default.
- W2947607572 cites W2979750740 @default.
- W2947607572 cites W2986382673 @default.
- W2947607572 doi "https://doi.org/10.48550/arxiv.1905.01684" @default.
- W2947607572 hasPublicationYear "2019" @default.
- W2947607572 type Work @default.
- W2947607572 sameAs 2947607572 @default.
- W2947607572 citedByCount "1" @default.
- W2947607572 countsByYear W29476075722019 @default.
- W2947607572 crossrefType "posted-content" @default.
- W2947607572 hasAuthorship W2947607572A5012581106 @default.
- W2947607572 hasAuthorship W2947607572A5022856212 @default.
- W2947607572 hasAuthorship W2947607572A5032708386 @default.
- W2947607572 hasAuthorship W2947607572A5036688260 @default.
- W2947607572 hasAuthorship W2947607572A5053334802 @default.
- W2947607572 hasBestOaLocation W29476075721 @default.
- W2947607572 hasConcept C119857082 @default.
- W2947607572 hasConcept C153180895 @default.
- W2947607572 hasConcept C154945302 @default.
- W2947607572 hasConcept C15744967 @default.
- W2947607572 hasConcept C188441871 @default.
- W2947607572 hasConcept C41008148 @default.
- W2947607572 hasConcept C41608201 @default.
- W2947607572 hasConcept C47385372 @default.
- W2947607572 hasConcept C50644808 @default.
- W2947607572 hasConcept C542102704 @default.
- W2947607572 hasConcept C73555534 @default.
- W2947607572 hasConcept C8038995 @default.
- W2947607572 hasConcept C95623464 @default.
- W2947607572 hasConceptScore W2947607572C119857082 @default.
- W2947607572 hasConceptScore W2947607572C153180895 @default.
- W2947607572 hasConceptScore W2947607572C154945302 @default.
- W2947607572 hasConceptScore W2947607572C15744967 @default.