Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947656058> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2947656058 endingPage "1300" @default.
- W2947656058 startingPage "1294" @default.
- W2947656058 abstract "In the field of bioinformatics research, a large volume of genetic data has been generated. Availability of higher throughput devices at lower cost has contributed to this generation of huge volumetric data. Handling such numerous data has become extremely challenging for selecting the relevant disease-causing gene. The development of microarray technology provides higher chances of cancer diagnosis, by enabling to measure the expression level of multiple genes at the same stretch. Selecting the relevant gene by using classifiers for investigation of gene expression data is a complicated process. Proper identification of gene from the gene expression datasets plays a vital role in improving the accuracy of classification. In this article, identification of the highly relevant gene from the gene expression data for cancer treatment is discussed in detail. By using modified meta-heuristic approach, known as 'parallel lion optimization' (PLOA) for selecting genes from microarray data that can classify various cancer sub-types with more accuracy. The experimental results depict that PLOA outperforms than LOA and other well-known approaches, considering the five benchmark cancer gene expression dataset. It returns 99% classification accuracy for the dataset namely Prostate, Lung, Leukemia and Central Nervous system (CNS) for top 200 genes. Prostate and Lymphoma dataset PLOA is 99.19% and 99.93% respectively. On evaluating the result with other algorithm, the higher level of accuracy in gene selection is achieved by the proposed algorithm." @default.
- W2947656058 created "2019-06-07" @default.
- W2947656058 creator A5013965732 @default.
- W2947656058 creator A5032933893 @default.
- W2947656058 date "2019-08-01" @default.
- W2947656058 modified "2023-09-24" @default.
- W2947656058 title "Gene Selection Using Parallel Lion Optimization Method in Microarray Data for Cancer Classification" @default.
- W2947656058 doi "https://doi.org/10.1166/jmihi.2019.2723" @default.
- W2947656058 hasPublicationYear "2019" @default.
- W2947656058 type Work @default.
- W2947656058 sameAs 2947656058 @default.
- W2947656058 citedByCount "17" @default.
- W2947656058 countsByYear W29476560582020 @default.
- W2947656058 countsByYear W29476560582021 @default.
- W2947656058 countsByYear W29476560582022 @default.
- W2947656058 crossrefType "journal-article" @default.
- W2947656058 hasAuthorship W2947656058A5013965732 @default.
- W2947656058 hasAuthorship W2947656058A5032933893 @default.
- W2947656058 hasConcept C104317684 @default.
- W2947656058 hasConcept C116834253 @default.
- W2947656058 hasConcept C124101348 @default.
- W2947656058 hasConcept C13280743 @default.
- W2947656058 hasConcept C150194340 @default.
- W2947656058 hasConcept C154945302 @default.
- W2947656058 hasConcept C185798385 @default.
- W2947656058 hasConcept C205649164 @default.
- W2947656058 hasConcept C2984324147 @default.
- W2947656058 hasConcept C41008148 @default.
- W2947656058 hasConcept C54355233 @default.
- W2947656058 hasConcept C59822182 @default.
- W2947656058 hasConcept C70721500 @default.
- W2947656058 hasConcept C81917197 @default.
- W2947656058 hasConcept C8415881 @default.
- W2947656058 hasConcept C86803240 @default.
- W2947656058 hasConceptScore W2947656058C104317684 @default.
- W2947656058 hasConceptScore W2947656058C116834253 @default.
- W2947656058 hasConceptScore W2947656058C124101348 @default.
- W2947656058 hasConceptScore W2947656058C13280743 @default.
- W2947656058 hasConceptScore W2947656058C150194340 @default.
- W2947656058 hasConceptScore W2947656058C154945302 @default.
- W2947656058 hasConceptScore W2947656058C185798385 @default.
- W2947656058 hasConceptScore W2947656058C205649164 @default.
- W2947656058 hasConceptScore W2947656058C2984324147 @default.
- W2947656058 hasConceptScore W2947656058C41008148 @default.
- W2947656058 hasConceptScore W2947656058C54355233 @default.
- W2947656058 hasConceptScore W2947656058C59822182 @default.
- W2947656058 hasConceptScore W2947656058C70721500 @default.
- W2947656058 hasConceptScore W2947656058C81917197 @default.
- W2947656058 hasConceptScore W2947656058C8415881 @default.
- W2947656058 hasConceptScore W2947656058C86803240 @default.
- W2947656058 hasIssue "6" @default.
- W2947656058 hasLocation W29476560581 @default.
- W2947656058 hasOpenAccess W2947656058 @default.
- W2947656058 hasPrimaryLocation W29476560581 @default.
- W2947656058 hasRelatedWork W1490111499 @default.
- W2947656058 hasRelatedWork W1495824015 @default.
- W2947656058 hasRelatedWork W1508332725 @default.
- W2947656058 hasRelatedWork W2051296607 @default.
- W2947656058 hasRelatedWork W2076099888 @default.
- W2947656058 hasRelatedWork W2152989354 @default.
- W2947656058 hasRelatedWork W2510595216 @default.
- W2947656058 hasRelatedWork W2613047924 @default.
- W2947656058 hasRelatedWork W2883256575 @default.
- W2947656058 hasRelatedWork W3155914767 @default.
- W2947656058 hasVolume "9" @default.
- W2947656058 isParatext "false" @default.
- W2947656058 isRetracted "false" @default.
- W2947656058 magId "2947656058" @default.
- W2947656058 workType "article" @default.