Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947675090> ?p ?o ?g. }
- W2947675090 endingPage "71130" @default.
- W2947675090 startingPage "71119" @default.
- W2947675090 abstract "Acoustic emission (AE) analysis is a powerful potential characterization method for fracture mechanism analysis during metallic specimen testing. Nevertheless, identifying and extracting each event when analyzing the raw signal remains a major challenge. Typically, the AE detection is carried out using a thresholding approach. However, though extensively applied, this approach presents some critical limitations due to overlapping transients, differences in strength and low signal-to-noise ratio. In this paper, to address these limitations, advanced methodologies for detecting AE hits have been developed. The most prominent methodologies used are instantaneous amplitude, the short-term average to long-term average ratio, the Akaike information criterion, and wavelet analysis, each of which exhibits satisfactory performance and ease of implementation for diverse applications. However, their proneness to errors in the presence of non-cyclostationary AE wavefronts and the lack of thorough comparison for transient AE signals are constraints to the wider application of these methods in non-destructive testing procedures. In this paper, with the aim of making aware of the drawbacks of the traditional threshold approach, a comprehensive analysis of its limiting factors when taking into regard the AE waveform behavior is presented. In addition, in a second section, a performance analysis of the main advanced representative-methods in the field is carried out through a common comparative framework, by analyzing first, AE waves generated from a standardized Hsu-Nielsen test and second, a data frame of a highly active signal derived from a tensile test. In this paper, with the aim to quantify the performance with which these AE detection methodologies work, for the first time, time features as the endpoint and duration accuracies, as well as statistical metrics as accuracy, precision, and false detection rates, are studied." @default.
- W2947675090 created "2019-06-07" @default.
- W2947675090 creator A5024993124 @default.
- W2947675090 creator A5063073348 @default.
- W2947675090 creator A5078539665 @default.
- W2947675090 date "2019-01-01" @default.
- W2947675090 modified "2023-10-14" @default.
- W2947675090 title "Performance Analysis of Acoustic Emission Hit Detection Methods Using Time Features" @default.
- W2947675090 cites W1545004066 @default.
- W2947675090 cites W1853489215 @default.
- W2947675090 cites W1970017502 @default.
- W2947675090 cites W1983116803 @default.
- W2947675090 cites W1988779432 @default.
- W2947675090 cites W1989603948 @default.
- W2947675090 cites W1989970417 @default.
- W2947675090 cites W2017813130 @default.
- W2947675090 cites W2028177339 @default.
- W2947675090 cites W2031429639 @default.
- W2947675090 cites W2036241893 @default.
- W2947675090 cites W2043785590 @default.
- W2947675090 cites W2053716330 @default.
- W2947675090 cites W2055708568 @default.
- W2947675090 cites W2056425547 @default.
- W2947675090 cites W2057842719 @default.
- W2947675090 cites W2062561891 @default.
- W2947675090 cites W2065182739 @default.
- W2947675090 cites W2067613664 @default.
- W2947675090 cites W2068048050 @default.
- W2947675090 cites W2076196062 @default.
- W2947675090 cites W2077751506 @default.
- W2947675090 cites W2090218979 @default.
- W2947675090 cites W2110733247 @default.
- W2947675090 cites W2142635246 @default.
- W2947675090 cites W2175594671 @default.
- W2947675090 cites W2188107595 @default.
- W2947675090 cites W2467004254 @default.
- W2947675090 cites W2481971111 @default.
- W2947675090 cites W2510297528 @default.
- W2947675090 cites W2513561372 @default.
- W2947675090 cites W2528961483 @default.
- W2947675090 cites W2570659212 @default.
- W2947675090 cites W2571048608 @default.
- W2947675090 cites W2591044625 @default.
- W2947675090 cites W2594663294 @default.
- W2947675090 cites W2602345255 @default.
- W2947675090 cites W2605668928 @default.
- W2947675090 cites W2753304910 @default.
- W2947675090 cites W2789384544 @default.
- W2947675090 cites W2807113021 @default.
- W2947675090 cites W2807594234 @default.
- W2947675090 cites W2810268340 @default.
- W2947675090 cites W2866020368 @default.
- W2947675090 doi "https://doi.org/10.1109/access.2019.2919224" @default.
- W2947675090 hasPublicationYear "2019" @default.
- W2947675090 type Work @default.
- W2947675090 sameAs 2947675090 @default.
- W2947675090 citedByCount "11" @default.
- W2947675090 countsByYear W29476750902020 @default.
- W2947675090 countsByYear W29476750902021 @default.
- W2947675090 countsByYear W29476750902022 @default.
- W2947675090 crossrefType "journal-article" @default.
- W2947675090 hasAuthorship W2947675090A5024993124 @default.
- W2947675090 hasAuthorship W2947675090A5063073348 @default.
- W2947675090 hasAuthorship W2947675090A5078539665 @default.
- W2947675090 hasBestOaLocation W29476750901 @default.
- W2947675090 hasConcept C104267543 @default.
- W2947675090 hasConcept C115961682 @default.
- W2947675090 hasConcept C121332964 @default.
- W2947675090 hasConcept C124101348 @default.
- W2947675090 hasConcept C127162648 @default.
- W2947675090 hasConcept C153180895 @default.
- W2947675090 hasConcept C154945302 @default.
- W2947675090 hasConcept C174598085 @default.
- W2947675090 hasConcept C178351263 @default.
- W2947675090 hasConcept C191178318 @default.
- W2947675090 hasConcept C197424946 @default.
- W2947675090 hasConcept C199360897 @default.
- W2947675090 hasConcept C24890656 @default.
- W2947675090 hasConcept C2779843651 @default.
- W2947675090 hasConcept C41008148 @default.
- W2947675090 hasConcept C47432892 @default.
- W2947675090 hasConcept C554190296 @default.
- W2947675090 hasConcept C76155785 @default.
- W2947675090 hasConceptScore W2947675090C104267543 @default.
- W2947675090 hasConceptScore W2947675090C115961682 @default.
- W2947675090 hasConceptScore W2947675090C121332964 @default.
- W2947675090 hasConceptScore W2947675090C124101348 @default.
- W2947675090 hasConceptScore W2947675090C127162648 @default.
- W2947675090 hasConceptScore W2947675090C153180895 @default.
- W2947675090 hasConceptScore W2947675090C154945302 @default.
- W2947675090 hasConceptScore W2947675090C174598085 @default.
- W2947675090 hasConceptScore W2947675090C178351263 @default.
- W2947675090 hasConceptScore W2947675090C191178318 @default.
- W2947675090 hasConceptScore W2947675090C197424946 @default.
- W2947675090 hasConceptScore W2947675090C199360897 @default.
- W2947675090 hasConceptScore W2947675090C24890656 @default.
- W2947675090 hasConceptScore W2947675090C2779843651 @default.
- W2947675090 hasConceptScore W2947675090C41008148 @default.