Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947683613> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2947683613 endingPage "27" @default.
- W2947683613 startingPage "26" @default.
- W2947683613 abstract "Natural killer (NK) cells play a key role in antiviral and tumour immunity. In the setting of HIV infection, accumulating evidence implicates NK cells as critical contributors to immune control of HIV. In particular, indirect NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) has been linked to vaccine-induced protective immunity against HIV infection and phenotypes of viral control [[1]Scully E. Alter G. NK cells in HIV disease.Curr HIV/AIDS Rep. 2016; 13: 85-94Crossref PubMed Scopus (88) Google Scholar]. With emerging knowledge of specialised subpopulations and increased understanding of NK cell memory and immunoregulatory properties, new prospects have emerged to address remaining challenges in the field of HIV; namely control of persistent inflammation and comorbidity in treated infection, development of an effective vaccine and safe and widely available strategies for a ‘functional cure’. NK cells recognise stress signals, cancer transformation or infection with immediate effector function achieved via expression of a wide array of receptors and integration of finely attuned signals. In addition to cytotoxic elimination of target cells, NK cells are potent producers of cytokines and chemokines and can promote or suppress adaptive and innate immune responses. NK cell pleiotropic functions and remarkable effector agility makes them ideal candidates for immunotherapeutic interventions. Several approaches, including the development of chimeric antigen receptor (CAR) NK cells, show substantial promise in cancer trials and can be translated to direct and augment NK cell responses to improve HIV control. Some examples include activation of NK cell through blocking inhibitory signalling though NKG2A and inhibitory KIRS or activation through TLR agonists and IL15 to increase NK cell antiviral responses [[2]Ram D.R. Manickam C. Lucar O. Shah S.V. Reeves R.K. Adaptive NK cell responses in HIV/SIV infections: a roadmap to cell-based therapeutics?.J Leukoc Biol. 2019; : 1-7https://doi.org/10.1002/JLB.MR0718-303RCrossref Scopus (14) Google Scholar] (Fig. 1). In addition to strategies boosting NK cell effector capability, the adoptive transfer of haploidentical NK cell infusion following IL-2 stimulation is being evaluated for HIV treatment (clinical trial NCT03346499). Although traditionally considered as innate effector cells, the recognition that NK cell subsets can clonally expand and form long-lasting pools of memory-like cells in response to viral infection and/or immunisation represents a major advance in the field of NK cell research. In humans adaptive NK cells have been described in the context of CMV infection, leading to a substantial and long-lasting increase in NKG2C+ NK cells displaying preferential binding to some HLA-E presented CMV peptides [[3]Hammer Q. Ruckert T. Borst E.M. Dunst J. Haubner A. Durek P. et al.Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells.Nat Immunol. 2018; 19: 453-463Crossref PubMed Scopus (209) Google Scholar]. Further subpopulations of adaptive NK cells are characterised by epigenetic changes, stochastic loss of expression of key proximal signalling molecules, that expand in response to antibody-opsonised targets or immune complexes and are imbued with an enhanced capacity for ADCC [[4]Schlums H. Cichocki F. Tesi B. Theorell J. Beziat V. Holmes T.D. et al.Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function.Immunity. 2015; 42: 443-456Summary Full Text Full Text PDF PubMed Scopus (469) Google Scholar]. Adaptive NK cells have been described in HIV infection with retained ADCC activity [[5]Peppa D. Pedroza-Pacheco I. Pellegrino P. Williams I. Maini M.K. Borrow P. Adaptive reconfiguration of natural killer cells in HIV-1 infection.Front Immunol. 2018; 9: 474Crossref PubMed Scopus (34) Google Scholar,[6]Zhou J. Amran F.S. Kramski M. Angelovich T.A. Elliott J. Hearps A.C. et al.An NK cell population lacking FcRgamma is expanded in chronically infected HIV patients.J Immunol. 2015; 194: 4688-4697Crossref PubMed Scopus (45) Google Scholar], indicating that selective NK cell subsets have unique immunologic features. These populations can be potentially targeted for developing antiviral approaches and designing therapeutic vaccines aimed at generating ADCC-promoting antibody responses or in combination with broadly neutralizing antibodies (bNAbs) (clinical trial NCT02018510). Interestingly, NK cell antigen specificity has been reported in non-human primates for SIV-derived antigens and following adenovirus 26 (Ad26) based SIV immunisation [[7]Reeves R.K. Li H. Jost S. Blass E. Li H. Schafer J.L. et al.Antigen-specific NK cell memory in rhesus macaques.Nat Immunol. 2015; 16: 927-932Crossref PubMed Scopus (181) Google Scholar]. Although direct evidence of HIV-specific NK cells in humans is currently lacking, human NK cells isolated from the liver of humanised mice previously vaccinated with HIV-encoded envelope protein displayed robust antigen-specific recall responses in vitro [[8]Nikzad R. Angelo L.S. Aviles-Padilla K. Le D.T. Singh V.K. Bimler L. et al.Human natural killer cells mediate adaptive immunity to viral antigens.Sci Immunol. 2019; 4Crossref PubMed Scopus (90) Google Scholar]. However, the precise mechanisms employed by NK cells to recognise and distinguish different antigens remain incompletely understood. Nonetheless, the generation of memory NK cells represents a novel goal of innovative vaccination approaches through more targeted adjuvants and/or specific cytokine signatures. NK cells can also acquire a memory-like phenotype induced as a result of more generalised signals. Cytokine-induced memory NK cells are currently being used in cancer immunotherapy and their enhanced potency could be exploited in HIV infection to achieve eradication [[9]Garrido C. Abad-Fernandez M. Tuyishime M. Pollara J.J. Ferrari G. Soriano-Sarabia N. et al.Interleukin-15-stimulated natural killer cells clear HIV-1-infected cells following latency reversal ex vivo.J Virol. 2018; 92Crossref PubMed Scopus (68) Google Scholar]. The critical role of NK cells in editing adaptive immune responses has been recently brought into focus by the study of NK cells in HIV-infected individuals who develop bnAbs. A novel pathway involving the recycling endosome effector protein RAB11Fip5 that impacts on NK cell functionality and immunoregulatory role was found to be associated with the induction of bNAbs [[10]Bradley T. Peppa D. Pedroza-Pacheco I. Li D. Cain D.W. Henao R. et al.RAB11FIP5 expression and altered natural killer cell function are associated with induction of HIV broadly neutralizing antibody responses.Cell. 2018; 175: 387-99 e17Summary Full Text Full Text PDF PubMed Scopus (49) Google Scholar]. This work has increased our understanding of NK cell regulation of humoral responses in humans and highlighted the need for careful dissection of the regulatory functions of NK cells that may need to be tempered in order to elicit robust humoral responses. Exploiting NK cells and subpopulations with adaptive features is emerging as an exciting field in augmenting therapeutic modalities against chronic viral infection (Fig. 1). Further exploration and understanding of the unique properties of specialised and memory NK cells subsets and the precise mechanisms NK cells employ to regulate adaptive responses remain, however, crucial in better targeting and optimising NK cell responses to improve HIV control and potentially effect a ‘functional cure’. The author declared no conflicts of interest." @default.
- W2947683613 created "2019-06-07" @default.
- W2947683613 creator A5081614891 @default.
- W2947683613 date "2019-06-01" @default.
- W2947683613 modified "2023-09-23" @default.
- W2947683613 title "Entering a new era of harnessing natural killer cell responses in HIV infection" @default.
- W2947683613 cites W1878895776 @default.
- W2947683613 cites W1970591872 @default.
- W2947683613 cites W2168201410 @default.
- W2947683613 cites W2306289197 @default.
- W2947683613 cites W2793566851 @default.
- W2947683613 cites W2794490228 @default.
- W2947683613 cites W2796894443 @default.
- W2947683613 cites W2892494775 @default.
- W2947683613 cites W2944492385 @default.
- W2947683613 doi "https://doi.org/10.1016/j.ebiom.2019.05.045" @default.
- W2947683613 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6606953" @default.
- W2947683613 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31147292" @default.
- W2947683613 hasPublicationYear "2019" @default.
- W2947683613 type Work @default.
- W2947683613 sameAs 2947683613 @default.
- W2947683613 citedByCount "6" @default.
- W2947683613 countsByYear W29476836132019 @default.
- W2947683613 countsByYear W29476836132020 @default.
- W2947683613 countsByYear W29476836132021 @default.
- W2947683613 countsByYear W29476836132022 @default.
- W2947683613 countsByYear W29476836132023 @default.
- W2947683613 crossrefType "journal-article" @default.
- W2947683613 hasAuthorship W2947683613A5081614891 @default.
- W2947683613 hasBestOaLocation W29476836131 @default.
- W2947683613 hasConcept C151730666 @default.
- W2947683613 hasConcept C159047783 @default.
- W2947683613 hasConcept C203014093 @default.
- W2947683613 hasConcept C2776608160 @default.
- W2947683613 hasConcept C3013748606 @default.
- W2947683613 hasConcept C71924100 @default.
- W2947683613 hasConcept C86803240 @default.
- W2947683613 hasConceptScore W2947683613C151730666 @default.
- W2947683613 hasConceptScore W2947683613C159047783 @default.
- W2947683613 hasConceptScore W2947683613C203014093 @default.
- W2947683613 hasConceptScore W2947683613C2776608160 @default.
- W2947683613 hasConceptScore W2947683613C3013748606 @default.
- W2947683613 hasConceptScore W2947683613C71924100 @default.
- W2947683613 hasConceptScore W2947683613C86803240 @default.
- W2947683613 hasFunder F4320320290 @default.
- W2947683613 hasLocation W29476836131 @default.
- W2947683613 hasLocation W29476836132 @default.
- W2947683613 hasLocation W29476836133 @default.
- W2947683613 hasLocation W29476836134 @default.
- W2947683613 hasOpenAccess W2947683613 @default.
- W2947683613 hasPrimaryLocation W29476836131 @default.
- W2947683613 hasRelatedWork W185296467 @default.
- W2947683613 hasRelatedWork W1945359667 @default.
- W2947683613 hasRelatedWork W1973460911 @default.
- W2947683613 hasRelatedWork W2049655029 @default.
- W2947683613 hasRelatedWork W2096903645 @default.
- W2947683613 hasRelatedWork W2140033339 @default.
- W2947683613 hasRelatedWork W2465215300 @default.
- W2947683613 hasRelatedWork W4255640712 @default.
- W2947683613 hasRelatedWork W4300011733 @default.
- W2947683613 hasRelatedWork W1543146126 @default.
- W2947683613 hasVolume "44" @default.
- W2947683613 isParatext "false" @default.
- W2947683613 isRetracted "false" @default.
- W2947683613 magId "2947683613" @default.
- W2947683613 workType "article" @default.