Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947689315> ?p ?o ?g. }
- W2947689315 endingPage "243" @default.
- W2947689315 startingPage "229" @default.
- W2947689315 abstract "Abstract Reliable flood forecasting systems are the prerequisite for proper flood warning systems. Currently, satellite remote sensing (SRS) observations are widely used to improve model forecasts. Although they provide distributed information, they are sometimes unable to satisfy flood modellers’ needs due to low overpass frequencies and high measuring uncertainties. This paper assesses the potential of sparsely distributed, in situ floodplain water level sensors to provide accurate, near-real time flood information as a means to enhance flood predictions. A synthetic twin experiment evaluates the assimilation of different sensor network configurations, designed through time series clustering and Voronoi spacing. With spatio-temporal RMSEs reaching up to 1 cm, the study demonstrates great potential. Adequate sensor placement proved crucial for improved performance. In practice, observation locations should be chosen such that they are located rather close to the river, to increase the likelihood of early flooding and thus acquiring valuable information at an early stage of flooding. Furthermore, high measuring frequencies benefit the simulations, though one should be careful not to overcorrect water levels as these may result in inconsistencies. Lastly, a network size of 5 to 7 observations yields good results, while an increasing number of observations generally diminishes the importance of extra observations. Our findings could greatly contribute to future flood observing systems to either compensate for ungauged areas, or complement current SRS practices." @default.
- W2947689315 created "2019-06-07" @default.
- W2947689315 creator A5011786146 @default.
- W2947689315 creator A5045211686 @default.
- W2947689315 creator A5056787306 @default.
- W2947689315 creator A5084455248 @default.
- W2947689315 date "2019-08-01" @default.
- W2947689315 modified "2023-09-24" @default.
- W2947689315 title "Improving flood inundation forecasts through the assimilation of in situ floodplain water level measurements based on alternative observation network configurations" @default.
- W2947689315 cites W1514248671 @default.
- W2947689315 cites W1694119402 @default.
- W2947689315 cites W1792626056 @default.
- W2947689315 cites W1849692094 @default.
- W2947689315 cites W1922715195 @default.
- W2947689315 cites W1935964479 @default.
- W2947689315 cites W1957575022 @default.
- W2947689315 cites W1964461497 @default.
- W2947689315 cites W1976758735 @default.
- W2947689315 cites W1978305832 @default.
- W2947689315 cites W1979087322 @default.
- W2947689315 cites W1981575871 @default.
- W2947689315 cites W1990441729 @default.
- W2947689315 cites W2001345576 @default.
- W2947689315 cites W2002610571 @default.
- W2947689315 cites W2008682495 @default.
- W2947689315 cites W2009104157 @default.
- W2947689315 cites W2010908680 @default.
- W2947689315 cites W2013749338 @default.
- W2947689315 cites W2017977562 @default.
- W2947689315 cites W2023020665 @default.
- W2947689315 cites W2032092130 @default.
- W2947689315 cites W2038821911 @default.
- W2947689315 cites W2040225117 @default.
- W2947689315 cites W2048455584 @default.
- W2947689315 cites W2049017883 @default.
- W2947689315 cites W2049106247 @default.
- W2947689315 cites W2049741199 @default.
- W2947689315 cites W2055668893 @default.
- W2947689315 cites W2057352841 @default.
- W2947689315 cites W2065955587 @default.
- W2947689315 cites W2069538984 @default.
- W2947689315 cites W2070704253 @default.
- W2947689315 cites W2082042339 @default.
- W2947689315 cites W2085438009 @default.
- W2947689315 cites W2089594470 @default.
- W2947689315 cites W2091819605 @default.
- W2947689315 cites W2097747115 @default.
- W2947689315 cites W2099812305 @default.
- W2947689315 cites W2101044141 @default.
- W2947689315 cites W2101661671 @default.
- W2947689315 cites W2102148524 @default.
- W2947689315 cites W2102201884 @default.
- W2947689315 cites W2113255414 @default.
- W2947689315 cites W2118971010 @default.
- W2947689315 cites W2124046678 @default.
- W2947689315 cites W2126715275 @default.
- W2947689315 cites W2130703758 @default.
- W2947689315 cites W2133059825 @default.
- W2947689315 cites W2137213180 @default.
- W2947689315 cites W2145955410 @default.
- W2947689315 cites W2147771508 @default.
- W2947689315 cites W2153901968 @default.
- W2947689315 cites W2154625287 @default.
- W2947689315 cites W2161419261 @default.
- W2947689315 cites W2162912803 @default.
- W2947689315 cites W2171994164 @default.
- W2947689315 cites W2179860363 @default.
- W2947689315 cites W2295695367 @default.
- W2947689315 cites W2469805270 @default.
- W2947689315 cites W2507017087 @default.
- W2947689315 cites W2550967757 @default.
- W2947689315 cites W2560173715 @default.
- W2947689315 cites W2588083849 @default.
- W2947689315 cites W2600930389 @default.
- W2947689315 cites W2606835700 @default.
- W2947689315 cites W2613636640 @default.
- W2947689315 cites W2724472964 @default.
- W2947689315 cites W2784225651 @default.
- W2947689315 cites W2794541504 @default.
- W2947689315 cites W2810761072 @default.
- W2947689315 cites W2885158046 @default.
- W2947689315 cites W2893423001 @default.
- W2947689315 cites W2963816767 @default.
- W2947689315 cites W47984108 @default.
- W2947689315 cites W879949682 @default.
- W2947689315 doi "https://doi.org/10.1016/j.advwatres.2019.05.025" @default.
- W2947689315 hasPublicationYear "2019" @default.
- W2947689315 type Work @default.
- W2947689315 sameAs 2947689315 @default.
- W2947689315 citedByCount "14" @default.
- W2947689315 countsByYear W29476893152020 @default.
- W2947689315 countsByYear W29476893152021 @default.
- W2947689315 countsByYear W29476893152022 @default.
- W2947689315 countsByYear W29476893152023 @default.
- W2947689315 crossrefType "journal-article" @default.
- W2947689315 hasAuthorship W2947689315A5011786146 @default.
- W2947689315 hasAuthorship W2947689315A5045211686 @default.
- W2947689315 hasAuthorship W2947689315A5056787306 @default.