Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947732883> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2947732883 abstract "Notions of depth in regression have been introduced and studied in the literature. The most famous example is Regression Depth (RD), which is a direct extension of location depth to regression. The projection regression depth (PRD) is the extension of another prevailing location depth, the projection depth, to regression. The computation issues of the RD have been discussed in the literature. The computation issues of the PRD have never been dealt with before. The computation issues of the PRD and its induced median (maximum depth estimator) in a regression setting are addressed now. For a given $bs{beta}inR^p$ exact algorithms for the PRD with cost $O(n^2log n)$ ($p=2$) and $O(N(n, p)(p^{3}+nlog n+np^{1.5}+npN_{Iter}))$ ($p>2$) and approximate algorithms for the PRD and its induced median with cost respectively $O(N_{mb{v}}np)$ and $O(Rp N_{bs{beta}}(p^2+nN_{mb{v}}N_{Iter}))$ are proposed. Here $N(n, p)$ is a number defined based on the total number of $(p-1)$ dimensional hyperplanes formed by points induced from sample points and the $bs{beta}$; $N_{mb{v}}$ is the total number of unit directions $mb{v}$ utilized; $N_{bs{beta}}$ is the total number of candidate regression parameters $bs{beta}$ employed; $N_{Iter}$ is the total number of iterations carried out in an optimization algorithm; $R$ is the total number of replications. Furthermore, as the second major contribution, three PRD induced estimators, which can be computed up to 30 times faster than that of the PRD induced median while maintaining a similar level of accuracy are introduced. Examples and simulation studies reveal that the depth median induced from the PRD is favorable in terms of robustness and efficiency, compared to the maximum depth estimator induced from the RD, which is the current leading regression median." @default.
- W2947732883 created "2019-06-07" @default.
- W2947732883 creator A5077086313 @default.
- W2947732883 date "2019-05-28" @default.
- W2947732883 modified "2023-10-14" @default.
- W2947732883 title "Computation of projection regression depth and its induced median" @default.
- W2947732883 cites W1430759985 @default.
- W2947732883 cites W1495119384 @default.
- W2947732883 cites W1508335918 @default.
- W2947732883 cites W1529933798 @default.
- W2947732883 cites W1766210857 @default.
- W2947732883 cites W1973744648 @default.
- W2947732883 cites W1973925361 @default.
- W2947732883 cites W1977751470 @default.
- W2947732883 cites W2012593985 @default.
- W2947732883 cites W2016440615 @default.
- W2947732883 cites W2017161727 @default.
- W2947732883 cites W2022266599 @default.
- W2947732883 cites W2025762001 @default.
- W2947732883 cites W2033381745 @default.
- W2947732883 cites W2037667414 @default.
- W2947732883 cites W2039892753 @default.
- W2947732883 cites W2040324983 @default.
- W2947732883 cites W2048352534 @default.
- W2947732883 cites W2066533688 @default.
- W2947732883 cites W2066725633 @default.
- W2947732883 cites W2069426496 @default.
- W2947732883 cites W2085756291 @default.
- W2947732883 cites W2088146874 @default.
- W2947732883 cites W2115808162 @default.
- W2947732883 cites W2129249398 @default.
- W2947732883 cites W2131357767 @default.
- W2947732883 cites W2152701363 @default.
- W2947732883 cites W2159030169 @default.
- W2947732883 cites W2308229758 @default.
- W2947732883 cites W2791251597 @default.
- W2947732883 cites W3016143300 @default.
- W2947732883 cites W3114932062 @default.
- W2947732883 cites W365126610 @default.
- W2947732883 doi "https://doi.org/10.48550/arxiv.1905.11846" @default.
- W2947732883 hasPublicationYear "2019" @default.
- W2947732883 type Work @default.
- W2947732883 sameAs 2947732883 @default.
- W2947732883 citedByCount "1" @default.
- W2947732883 countsByYear W29477328832018 @default.
- W2947732883 crossrefType "posted-content" @default.
- W2947732883 hasAuthorship W2947732883A5077086313 @default.
- W2947732883 hasBestOaLocation W29477328831 @default.
- W2947732883 hasConcept C105795698 @default.
- W2947732883 hasConcept C11413529 @default.
- W2947732883 hasConcept C114614502 @default.
- W2947732883 hasConcept C152877465 @default.
- W2947732883 hasConcept C185429906 @default.
- W2947732883 hasConcept C199360897 @default.
- W2947732883 hasConcept C2778029271 @default.
- W2947732883 hasConcept C33923547 @default.
- W2947732883 hasConcept C41008148 @default.
- W2947732883 hasConcept C45374587 @default.
- W2947732883 hasConcept C48921125 @default.
- W2947732883 hasConcept C57493831 @default.
- W2947732883 hasConcept C68693459 @default.
- W2947732883 hasConcept C83546350 @default.
- W2947732883 hasConceptScore W2947732883C105795698 @default.
- W2947732883 hasConceptScore W2947732883C11413529 @default.
- W2947732883 hasConceptScore W2947732883C114614502 @default.
- W2947732883 hasConceptScore W2947732883C152877465 @default.
- W2947732883 hasConceptScore W2947732883C185429906 @default.
- W2947732883 hasConceptScore W2947732883C199360897 @default.
- W2947732883 hasConceptScore W2947732883C2778029271 @default.
- W2947732883 hasConceptScore W2947732883C33923547 @default.
- W2947732883 hasConceptScore W2947732883C41008148 @default.
- W2947732883 hasConceptScore W2947732883C45374587 @default.
- W2947732883 hasConceptScore W2947732883C48921125 @default.
- W2947732883 hasConceptScore W2947732883C57493831 @default.
- W2947732883 hasConceptScore W2947732883C68693459 @default.
- W2947732883 hasConceptScore W2947732883C83546350 @default.
- W2947732883 hasLocation W29477328831 @default.
- W2947732883 hasOpenAccess W2947732883 @default.
- W2947732883 hasPrimaryLocation W29477328831 @default.
- W2947732883 hasRelatedWork W1975396838 @default.
- W2947732883 hasRelatedWork W2072090478 @default.
- W2947732883 hasRelatedWork W2154576538 @default.
- W2947732883 hasRelatedWork W2375721435 @default.
- W2947732883 hasRelatedWork W247449116 @default.
- W2947732883 hasRelatedWork W2808174006 @default.
- W2947732883 hasRelatedWork W3022049958 @default.
- W2947732883 hasRelatedWork W3124236979 @default.
- W2947732883 hasRelatedWork W641278561 @default.
- W2947732883 hasRelatedWork W2184922845 @default.
- W2947732883 isParatext "false" @default.
- W2947732883 isRetracted "false" @default.
- W2947732883 magId "2947732883" @default.
- W2947732883 workType "article" @default.