Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947744585> ?p ?o ?g. }
- W2947744585 endingPage "323" @default.
- W2947744585 startingPage "314" @default.
- W2947744585 abstract "The volumetric mass transfer coefficient (kLa) is one of the most important parameters for design and scale-up of gas–liquid–solid three-phase mechanically stirred tank reactors. In this work, the effects of agitation speed, superficial gas velocity, temperature, and volumetric solid concentration (CV) on the power consumption and kLa were discussed and quantitatively analyzed. In an air-water-glass beads system, the gassed power number (NPG) and kLa increase remarkably with the temperature. At ambient temperature, kLa decreases significantly with increasing CV with a power law exponent of 3.10, but this decreasing effect becomes weaker at higher temperatures. In this hot-sparged three-phase system, the addition of solids slows down the increasing tendency of NPG with the temperature, but enhances the increasing tendency of kLa. The increase in temperature weakens the decreasing effect of CV on kLa. Compared with the effect of temperature on NPG and kLa, the effect of CV is nearly negligible. As a practical guide to industrial applications, it is more effective to enhance the gas–liquid mass transfer by increasing the temperature or power consumption than by changing CV or increasing superficial gas velocity. The empirical correlations of power consumption and kLa obtained in this work can provide helpful guidance for the industrial design and operation of hot-sparged three-phase stirred tank reactors." @default.
- W2947744585 created "2019-06-07" @default.
- W2947744585 creator A5003249366 @default.
- W2947744585 creator A5014606927 @default.
- W2947744585 creator A5018846686 @default.
- W2947744585 creator A5068216953 @default.
- W2947744585 creator A5072941284 @default.
- W2947744585 creator A5077386632 @default.
- W2947744585 date "2019-09-01" @default.
- W2947744585 modified "2023-09-27" @default.
- W2947744585 title "Power consumption and gas–liquid mass transfer in a hot-sparged three-phase stirred reactor" @default.
- W2947744585 cites W1545030569 @default.
- W2947744585 cites W1645064217 @default.
- W2947744585 cites W1965972154 @default.
- W2947744585 cites W1966956573 @default.
- W2947744585 cites W1971483385 @default.
- W2947744585 cites W1974120072 @default.
- W2947744585 cites W1978796100 @default.
- W2947744585 cites W1981851727 @default.
- W2947744585 cites W1985821731 @default.
- W2947744585 cites W1986731367 @default.
- W2947744585 cites W1987780406 @default.
- W2947744585 cites W1988154514 @default.
- W2947744585 cites W1989442564 @default.
- W2947744585 cites W1992912322 @default.
- W2947744585 cites W1993369492 @default.
- W2947744585 cites W1993385998 @default.
- W2947744585 cites W1993667073 @default.
- W2947744585 cites W2005697148 @default.
- W2947744585 cites W2005928488 @default.
- W2947744585 cites W2010662073 @default.
- W2947744585 cites W2010957824 @default.
- W2947744585 cites W2013179910 @default.
- W2947744585 cites W2014906420 @default.
- W2947744585 cites W2016179090 @default.
- W2947744585 cites W2025408309 @default.
- W2947744585 cites W2027974329 @default.
- W2947744585 cites W2028444348 @default.
- W2947744585 cites W2029144424 @default.
- W2947744585 cites W2032917837 @default.
- W2947744585 cites W2034893727 @default.
- W2947744585 cites W2034999454 @default.
- W2947744585 cites W2037030069 @default.
- W2947744585 cites W2039986193 @default.
- W2947744585 cites W2040337257 @default.
- W2947744585 cites W2041538617 @default.
- W2947744585 cites W2043081664 @default.
- W2947744585 cites W2049189369 @default.
- W2947744585 cites W2051612289 @default.
- W2947744585 cites W2059714664 @default.
- W2947744585 cites W2065759310 @default.
- W2947744585 cites W2065868413 @default.
- W2947744585 cites W2067260309 @default.
- W2947744585 cites W2068434324 @default.
- W2947744585 cites W2078968651 @default.
- W2947744585 cites W2081245882 @default.
- W2947744585 cites W2081889870 @default.
- W2947744585 cites W2084264174 @default.
- W2947744585 cites W2089044452 @default.
- W2947744585 cites W2091796016 @default.
- W2947744585 cites W2125583415 @default.
- W2947744585 cites W2138263748 @default.
- W2947744585 cites W2152783510 @default.
- W2947744585 cites W2170153573 @default.
- W2947744585 cites W2192503598 @default.
- W2947744585 cites W2285968904 @default.
- W2947744585 cites W2287196920 @default.
- W2947744585 cites W2327835024 @default.
- W2947744585 cites W2550786655 @default.
- W2947744585 cites W2585508746 @default.
- W2947744585 cites W2801977487 @default.
- W2947744585 cites W1996158077 @default.
- W2947744585 doi "https://doi.org/10.1016/j.powtec.2019.05.065" @default.
- W2947744585 hasPublicationYear "2019" @default.
- W2947744585 type Work @default.
- W2947744585 sameAs 2947744585 @default.
- W2947744585 citedByCount "4" @default.
- W2947744585 countsByYear W29477445852020 @default.
- W2947744585 countsByYear W29477445852021 @default.
- W2947744585 countsByYear W29477445852023 @default.
- W2947744585 crossrefType "journal-article" @default.
- W2947744585 hasAuthorship W2947744585A5003249366 @default.
- W2947744585 hasAuthorship W2947744585A5014606927 @default.
- W2947744585 hasAuthorship W2947744585A5018846686 @default.
- W2947744585 hasAuthorship W2947744585A5068216953 @default.
- W2947744585 hasAuthorship W2947744585A5072941284 @default.
- W2947744585 hasAuthorship W2947744585A5077386632 @default.
- W2947744585 hasConcept C101555633 @default.
- W2947744585 hasConcept C113196181 @default.
- W2947744585 hasConcept C121332964 @default.
- W2947744585 hasConcept C147789679 @default.
- W2947744585 hasConcept C163258240 @default.
- W2947744585 hasConcept C178790620 @default.
- W2947744585 hasConcept C185592680 @default.
- W2947744585 hasConcept C18762648 @default.
- W2947744585 hasConcept C192562407 @default.
- W2947744585 hasConcept C2777874358 @default.
- W2947744585 hasConcept C2779356388 @default.