Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947746688> ?p ?o ?g. }
- W2947746688 endingPage "322" @default.
- W2947746688 startingPage "311" @default.
- W2947746688 abstract "The longitudinal dispersion coefficient (LDC) plays an important role in modeling the transport of pollutants and sediment in natural rivers. As a result of transportation processes, the concentration of pollutants changes along the river. Various studies have been conducted to provide simple equations for estimating LDC. In this study, machine learning methods, namely support vector regression, Gaussian process regression, M5 model tree (M5P) and random forest, and multiple linear regression were examined in predicting the LDC in natural streams. Data sets from 60 rivers around the world with different hydraulic and geometric features were gathered to develop models for LDC estimation. Statistical criteria, including correlation coefficient (CC), root mean squared error (RMSE) and mean absolute error (MAE), were used to scrutinize the models. The LDC values estimated by these models were compared with the corresponding results of common empirical models. The Taylor chart was used to evaluate the models and the results showed that among the machine learning models, M5P had superior performance, with CC of 0.823, RMSE of 454.9 and MAE of 380.9. The model of Sahay and Dutta, with CC of 0.795, RMSE of 460.7 and MAE of 306.1, gave more precise results than the other empirical models. The main advantage of M5P models is their ability to provide practical formulae. In conclusion, the results proved that the developed M5P model with simple formulations was superior to other machine learning models and empirical models; therefore, it can be used as a proper tool for estimating the LDC in rivers." @default.
- W2947746688 created "2019-06-07" @default.
- W2947746688 creator A5028145236 @default.
- W2947746688 creator A5044495811 @default.
- W2947746688 creator A5045936239 @default.
- W2947746688 creator A5072746309 @default.
- W2947746688 creator A5081732187 @default.
- W2947746688 creator A5081904302 @default.
- W2947746688 creator A5086550972 @default.
- W2947746688 date "2020-01-01" @default.
- W2947746688 modified "2023-10-15" @default.
- W2947746688 title "Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms" @default.
- W2947746688 cites W1502922572 @default.
- W2947746688 cites W1545106967 @default.
- W2947746688 cites W1971285467 @default.
- W2947746688 cites W1974283773 @default.
- W2947746688 cites W1975934790 @default.
- W2947746688 cites W1985479415 @default.
- W2947746688 cites W1996031526 @default.
- W2947746688 cites W1998847920 @default.
- W2947746688 cites W2000676513 @default.
- W2947746688 cites W2017527151 @default.
- W2947746688 cites W2029888179 @default.
- W2947746688 cites W2035802397 @default.
- W2947746688 cites W2054151177 @default.
- W2947746688 cites W2056656981 @default.
- W2947746688 cites W2062236565 @default.
- W2947746688 cites W2070091301 @default.
- W2947746688 cites W2099081432 @default.
- W2947746688 cites W2113622890 @default.
- W2947746688 cites W2133532129 @default.
- W2947746688 cites W2150668077 @default.
- W2947746688 cites W2156909104 @default.
- W2947746688 cites W2298869788 @default.
- W2947746688 cites W2334291610 @default.
- W2947746688 cites W2364887214 @default.
- W2947746688 cites W2463883034 @default.
- W2947746688 cites W2488534588 @default.
- W2947746688 cites W2559471356 @default.
- W2947746688 cites W2594967417 @default.
- W2947746688 cites W2604856171 @default.
- W2947746688 cites W2749785751 @default.
- W2947746688 cites W2761194276 @default.
- W2947746688 cites W2809928955 @default.
- W2947746688 cites W2883987780 @default.
- W2947746688 cites W2895196240 @default.
- W2947746688 cites W2900276876 @default.
- W2947746688 cites W2909151008 @default.
- W2947746688 cites W2909379168 @default.
- W2947746688 cites W2909932415 @default.
- W2947746688 cites W2923977719 @default.
- W2947746688 cites W2946940223 @default.
- W2947746688 cites W2954327039 @default.
- W2947746688 cites W2972302268 @default.
- W2947746688 cites W3099487920 @default.
- W2947746688 cites W4230811873 @default.
- W2947746688 cites W942809984 @default.
- W2947746688 doi "https://doi.org/10.1080/19942060.2020.1712260" @default.
- W2947746688 hasPublicationYear "2020" @default.
- W2947746688 type Work @default.
- W2947746688 sameAs 2947746688 @default.
- W2947746688 citedByCount "46" @default.
- W2947746688 countsByYear W29477466882020 @default.
- W2947746688 countsByYear W29477466882021 @default.
- W2947746688 countsByYear W29477466882022 @default.
- W2947746688 countsByYear W29477466882023 @default.
- W2947746688 crossrefType "journal-article" @default.
- W2947746688 hasAuthorship W2947746688A5028145236 @default.
- W2947746688 hasAuthorship W2947746688A5044495811 @default.
- W2947746688 hasAuthorship W2947746688A5045936239 @default.
- W2947746688 hasAuthorship W2947746688A5072746309 @default.
- W2947746688 hasAuthorship W2947746688A5081732187 @default.
- W2947746688 hasAuthorship W2947746688A5081904302 @default.
- W2947746688 hasAuthorship W2947746688A5086550972 @default.
- W2947746688 hasBestOaLocation W29477466881 @default.
- W2947746688 hasConcept C105795698 @default.
- W2947746688 hasConcept C11413529 @default.
- W2947746688 hasConcept C119857082 @default.
- W2947746688 hasConcept C12267149 @default.
- W2947746688 hasConcept C128990827 @default.
- W2947746688 hasConcept C133199616 @default.
- W2947746688 hasConcept C139945424 @default.
- W2947746688 hasConcept C152877465 @default.
- W2947746688 hasConcept C154945302 @default.
- W2947746688 hasConcept C2780092901 @default.
- W2947746688 hasConcept C33923547 @default.
- W2947746688 hasConcept C41008148 @default.
- W2947746688 hasConcept C44154836 @default.
- W2947746688 hasConcept C48921125 @default.
- W2947746688 hasConcept C83546350 @default.
- W2947746688 hasConceptScore W2947746688C105795698 @default.
- W2947746688 hasConceptScore W2947746688C11413529 @default.
- W2947746688 hasConceptScore W2947746688C119857082 @default.
- W2947746688 hasConceptScore W2947746688C12267149 @default.
- W2947746688 hasConceptScore W2947746688C128990827 @default.
- W2947746688 hasConceptScore W2947746688C133199616 @default.
- W2947746688 hasConceptScore W2947746688C139945424 @default.
- W2947746688 hasConceptScore W2947746688C152877465 @default.