Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947781656> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2947781656 endingPage "101615" @default.
- W2947781656 startingPage "101615" @default.
- W2947781656 abstract "A smart city connects physical, information technology, social, and business infrastructures together to leverage their collective intelligence. Feedback drives improvements in service, city development, and quality of life in the city. Therefore, sentiment analysis in real-time of opinions expressed in text form by residents in the city is absolutely necessary. Nowadays, machine learning is widely applied to sentiment analysis of decisions in business, especially deep learning. In this experiment, we evaluated and compared the performances of several conventional deep learning models: Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (Bi-LSTM), in sentiment analysis of Thai children tales. In several previous studies, many features have been used in all of the models mentioned, features such as word embedding that helps a model to understand the semantics of each word, POS-tag that helps a model to understand the grammatical function of words, and sentic that helps a model to understand the emotion of words. Some combinations of these features have also been used. The results of this experiment show that the CNN model that used all three features gave the best result of 0.817 F1-score at p < 0.01, which was significantly better than all other models." @default.
- W2947781656 created "2019-06-07" @default.
- W2947781656 creator A5057839991 @default.
- W2947781656 creator A5066462028 @default.
- W2947781656 date "2019-10-01" @default.
- W2947781656 modified "2023-09-26" @default.
- W2947781656 title "Thai sentiment analysis with deep learning techniques: A comparative study based on word embedding, POS-tag, and sentic features" @default.
- W2947781656 cites W1531333757 @default.
- W2947781656 cites W1663984431 @default.
- W2947781656 cites W1932847118 @default.
- W2947781656 cites W2010772936 @default.
- W2947781656 cites W2011226837 @default.
- W2947781656 cites W2019759670 @default.
- W2947781656 cites W2043092378 @default.
- W2947781656 cites W2044316121 @default.
- W2947781656 cites W2050685090 @default.
- W2947781656 cites W2064675550 @default.
- W2947781656 cites W2072561200 @default.
- W2947781656 cites W2073990350 @default.
- W2947781656 cites W2117737507 @default.
- W2947781656 cites W2141774868 @default.
- W2947781656 cites W2170436435 @default.
- W2947781656 cites W2250539671 @default.
- W2947781656 cites W2285252321 @default.
- W2947781656 cites W2303040953 @default.
- W2947781656 cites W2474087659 @default.
- W2947781656 cites W2557667009 @default.
- W2947781656 cites W2586248210 @default.
- W2947781656 cites W2963026768 @default.
- W2947781656 cites W3104737638 @default.
- W2947781656 cites W3125866593 @default.
- W2947781656 cites W4211186029 @default.
- W2947781656 doi "https://doi.org/10.1016/j.scs.2019.101615" @default.
- W2947781656 hasPublicationYear "2019" @default.
- W2947781656 type Work @default.
- W2947781656 sameAs 2947781656 @default.
- W2947781656 citedByCount "47" @default.
- W2947781656 countsByYear W29477816562020 @default.
- W2947781656 countsByYear W29477816562021 @default.
- W2947781656 countsByYear W29477816562022 @default.
- W2947781656 countsByYear W29477816562023 @default.
- W2947781656 crossrefType "journal-article" @default.
- W2947781656 hasAuthorship W2947781656A5057839991 @default.
- W2947781656 hasAuthorship W2947781656A5066462028 @default.
- W2947781656 hasConcept C108583219 @default.
- W2947781656 hasConcept C119857082 @default.
- W2947781656 hasConcept C138885662 @default.
- W2947781656 hasConcept C153083717 @default.
- W2947781656 hasConcept C154945302 @default.
- W2947781656 hasConcept C184337299 @default.
- W2947781656 hasConcept C199360897 @default.
- W2947781656 hasConcept C204321447 @default.
- W2947781656 hasConcept C2777462759 @default.
- W2947781656 hasConcept C41008148 @default.
- W2947781656 hasConcept C41608201 @default.
- W2947781656 hasConcept C41895202 @default.
- W2947781656 hasConcept C66402592 @default.
- W2947781656 hasConcept C81363708 @default.
- W2947781656 hasConcept C90805587 @default.
- W2947781656 hasConceptScore W2947781656C108583219 @default.
- W2947781656 hasConceptScore W2947781656C119857082 @default.
- W2947781656 hasConceptScore W2947781656C138885662 @default.
- W2947781656 hasConceptScore W2947781656C153083717 @default.
- W2947781656 hasConceptScore W2947781656C154945302 @default.
- W2947781656 hasConceptScore W2947781656C184337299 @default.
- W2947781656 hasConceptScore W2947781656C199360897 @default.
- W2947781656 hasConceptScore W2947781656C204321447 @default.
- W2947781656 hasConceptScore W2947781656C2777462759 @default.
- W2947781656 hasConceptScore W2947781656C41008148 @default.
- W2947781656 hasConceptScore W2947781656C41608201 @default.
- W2947781656 hasConceptScore W2947781656C41895202 @default.
- W2947781656 hasConceptScore W2947781656C66402592 @default.
- W2947781656 hasConceptScore W2947781656C81363708 @default.
- W2947781656 hasConceptScore W2947781656C90805587 @default.
- W2947781656 hasLocation W29477816561 @default.
- W2947781656 hasOpenAccess W2947781656 @default.
- W2947781656 hasPrimaryLocation W29477816561 @default.
- W2947781656 hasRelatedWork W2335882425 @default.
- W2947781656 hasRelatedWork W2337926734 @default.
- W2947781656 hasRelatedWork W2338093180 @default.
- W2947781656 hasRelatedWork W2620816324 @default.
- W2947781656 hasRelatedWork W2745862583 @default.
- W2947781656 hasRelatedWork W2961794095 @default.
- W2947781656 hasRelatedWork W3080191145 @default.
- W2947781656 hasRelatedWork W3192794374 @default.
- W2947781656 hasRelatedWork W4311257506 @default.
- W2947781656 hasRelatedWork W4362613237 @default.
- W2947781656 hasVolume "50" @default.
- W2947781656 isParatext "false" @default.
- W2947781656 isRetracted "false" @default.
- W2947781656 magId "2947781656" @default.
- W2947781656 workType "article" @default.