Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947787176> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2947787176 abstract "Handwritten digits recognition is considered as a core to a diversity of emerging application. It is used widely by computer vision and machine learning researchers for performing practical applications such as computerized bank check numbers reading. However, executing a computerized system to carry out certain types of duties is not easy and it is a challenging matter. Recognizing the numeral handwriting of a person from another is a hard task because each individual has a unique handwriting way. The selection of the classifiers and the number of features play a vast role in achieving best possible accuracy of classification. This paper presents a comparison of three classification algorithms namely Naive Bayes (NB), Multilayer Perceptron (MLP) and K_Star algorithm based on correlation features selection (CFS) using NIST handwritten dataset. The objective of this comparison is to find out the best classifier among the three ones that can give an acceptable accuracy rate using a minimum number of selected features. The accuracy measurement parameters are used to assess the performance of each classifier individually, which are precision, recall and F-measure. The results show that K_Star algorithm gives better recognition rate than NB and MLPas it reached the accuracy of 82.36%." @default.
- W2947787176 created "2019-06-07" @default.
- W2947787176 creator A5064075589 @default.
- W2947787176 creator A5084486465 @default.
- W2947787176 date "2019-04-01" @default.
- W2947787176 modified "2023-10-16" @default.
- W2947787176 title "A Comparison of Three Classification Algorithms for Handwritten Digit Recognition" @default.
- W2947787176 cites W1644402181 @default.
- W2947787176 cites W2054248943 @default.
- W2947787176 cites W2404247879 @default.
- W2947787176 cites W2515331167 @default.
- W2947787176 cites W2535237137 @default.
- W2947787176 cites W2589736021 @default.
- W2947787176 cites W2736088923 @default.
- W2947787176 cites W2741379673 @default.
- W2947787176 cites W2768121648 @default.
- W2947787176 cites W2773616461 @default.
- W2947787176 cites W2780330901 @default.
- W2947787176 cites W2786162207 @default.
- W2947787176 cites W2787356053 @default.
- W2947787176 cites W2789461907 @default.
- W2947787176 cites W2809699757 @default.
- W2947787176 cites W2885614550 @default.
- W2947787176 cites W2893282617 @default.
- W2947787176 cites W2895974470 @default.
- W2947787176 cites W2902059409 @default.
- W2947787176 cites W2903404602 @default.
- W2947787176 cites W2903461962 @default.
- W2947787176 cites W1967606951 @default.
- W2947787176 doi "https://doi.org/10.1109/icoase.2019.8723702" @default.
- W2947787176 hasPublicationYear "2019" @default.
- W2947787176 type Work @default.
- W2947787176 sameAs 2947787176 @default.
- W2947787176 citedByCount "23" @default.
- W2947787176 countsByYear W29477871762019 @default.
- W2947787176 countsByYear W29477871762020 @default.
- W2947787176 countsByYear W29477871762021 @default.
- W2947787176 countsByYear W29477871762022 @default.
- W2947787176 countsByYear W29477871762023 @default.
- W2947787176 crossrefType "proceedings-article" @default.
- W2947787176 hasAuthorship W2947787176A5064075589 @default.
- W2947787176 hasAuthorship W2947787176A5084486465 @default.
- W2947787176 hasConcept C110083411 @default.
- W2947787176 hasConcept C111219384 @default.
- W2947787176 hasConcept C112640561 @default.
- W2947787176 hasConcept C119857082 @default.
- W2947787176 hasConcept C12267149 @default.
- W2947787176 hasConcept C153180895 @default.
- W2947787176 hasConcept C154945302 @default.
- W2947787176 hasConcept C204160518 @default.
- W2947787176 hasConcept C2779386606 @default.
- W2947787176 hasConcept C28490314 @default.
- W2947787176 hasConcept C40969351 @default.
- W2947787176 hasConcept C41008148 @default.
- W2947787176 hasConcept C50644808 @default.
- W2947787176 hasConcept C52001869 @default.
- W2947787176 hasConcept C52622490 @default.
- W2947787176 hasConcept C60908668 @default.
- W2947787176 hasConcept C95623464 @default.
- W2947787176 hasConceptScore W2947787176C110083411 @default.
- W2947787176 hasConceptScore W2947787176C111219384 @default.
- W2947787176 hasConceptScore W2947787176C112640561 @default.
- W2947787176 hasConceptScore W2947787176C119857082 @default.
- W2947787176 hasConceptScore W2947787176C12267149 @default.
- W2947787176 hasConceptScore W2947787176C153180895 @default.
- W2947787176 hasConceptScore W2947787176C154945302 @default.
- W2947787176 hasConceptScore W2947787176C204160518 @default.
- W2947787176 hasConceptScore W2947787176C2779386606 @default.
- W2947787176 hasConceptScore W2947787176C28490314 @default.
- W2947787176 hasConceptScore W2947787176C40969351 @default.
- W2947787176 hasConceptScore W2947787176C41008148 @default.
- W2947787176 hasConceptScore W2947787176C50644808 @default.
- W2947787176 hasConceptScore W2947787176C52001869 @default.
- W2947787176 hasConceptScore W2947787176C52622490 @default.
- W2947787176 hasConceptScore W2947787176C60908668 @default.
- W2947787176 hasConceptScore W2947787176C95623464 @default.
- W2947787176 hasLocation W29477871761 @default.
- W2947787176 hasOpenAccess W2947787176 @default.
- W2947787176 hasPrimaryLocation W29477871761 @default.
- W2947787176 hasRelatedWork W1664083420 @default.
- W2947787176 hasRelatedWork W1998570028 @default.
- W2947787176 hasRelatedWork W2099302921 @default.
- W2947787176 hasRelatedWork W2104045096 @default.
- W2947787176 hasRelatedWork W2148064482 @default.
- W2947787176 hasRelatedWork W2727048367 @default.
- W2947787176 hasRelatedWork W2985682355 @default.
- W2947787176 hasRelatedWork W4206518317 @default.
- W2947787176 hasRelatedWork W4206637193 @default.
- W2947787176 hasRelatedWork W2124083631 @default.
- W2947787176 isParatext "false" @default.
- W2947787176 isRetracted "false" @default.
- W2947787176 magId "2947787176" @default.
- W2947787176 workType "article" @default.