Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947806959> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2947806959 endingPage "320" @default.
- W2947806959 startingPage "320" @default.
- W2947806959 abstract "Improved-performance day-ahead electricity demand forecast is important to deliver necessary information for right decision of energy management of microgrids. It supports microgrid operators and stakeholders to have better decisions on microgrid flexibility, stability and control. The available conventional forecasting methods for electricity demand at national or regional level are not effective for electricity demand forecasting in microgrids. This is due to the fact that the electricity consumption in microgrids is many times less than the regional or national demands and it is highly volatile. In this paper, an integrated Artificial Intelligence (AI) based approach consisting of Wavelet Transform (WT), Simulated Annealing (SA) and Feedforward Artificial Neural Network (FFANN) is devised for day-ahead prediction of electric power consumption in microgrids. The FFANN is the basic forecasting engine of the proposed model. The WT is utilized to extract relevant features of the target variable (electric load data series) to obtain a cluster of enhanced-feature subseries. The extracted subseries of the past values of the electric load demand data are employed as the target variables to model the FFANN. The SA optimization technique is employed to obtain the optimal values of the FFANN weight parameters during the training process. Historical information of actual electricity consumption, meteorological variables, daily variations, weekly variations, and working/non-working day indicators have been employed to develop the forecasting tool of the devised integrated AI based approach. The approach is validated using electricity demand data of an operational microgrid in Beijing, China. The prediction results are presented for future testing days with one-hour time interval. The validation results demonstrated that the devised approach is capable to forecast the microgrid electricity demand with acceptably small error and reasonably short computation time. Moreover, the prediction performance of the devised approach has been evaluated relative to other four approaches and resulted in better prediction accuracy." @default.
- W2947806959 created "2019-06-07" @default.
- W2947806959 creator A5056691015 @default.
- W2947806959 creator A5072742271 @default.
- W2947806959 date "2019-05-30" @default.
- W2947806959 modified "2023-10-17" @default.
- W2947806959 title "Day-Ahead Prediction of Microgrid Electricity Demand Using a Hybrid Artificial Intelligence Model" @default.
- W2947806959 cites W1720804347 @default.
- W2947806959 cites W1973237289 @default.
- W2947806959 cites W1976754765 @default.
- W2947806959 cites W1988908564 @default.
- W2947806959 cites W2017393964 @default.
- W2947806959 cites W2024060531 @default.
- W2947806959 cites W2024493895 @default.
- W2947806959 cites W2056760934 @default.
- W2947806959 cites W2058326618 @default.
- W2947806959 cites W2095471434 @default.
- W2947806959 cites W2100090926 @default.
- W2947806959 cites W2132984323 @default.
- W2947806959 cites W2141789512 @default.
- W2947806959 cites W2160797005 @default.
- W2947806959 cites W2300781102 @default.
- W2947806959 cites W2562403923 @default.
- W2947806959 cites W2743680082 @default.
- W2947806959 cites W2767559196 @default.
- W2947806959 cites W2774931013 @default.
- W2947806959 cites W2787944342 @default.
- W2947806959 cites W2791083168 @default.
- W2947806959 cites W2791252587 @default.
- W2947806959 cites W2806033525 @default.
- W2947806959 cites W2815310989 @default.
- W2947806959 cites W2887874040 @default.
- W2947806959 cites W2888610471 @default.
- W2947806959 cites W4304118855 @default.
- W2947806959 doi "https://doi.org/10.3390/pr7060320" @default.
- W2947806959 hasPublicationYear "2019" @default.
- W2947806959 type Work @default.
- W2947806959 sameAs 2947806959 @default.
- W2947806959 citedByCount "13" @default.
- W2947806959 countsByYear W29478069592020 @default.
- W2947806959 countsByYear W29478069592021 @default.
- W2947806959 countsByYear W29478069592022 @default.
- W2947806959 countsByYear W29478069592023 @default.
- W2947806959 crossrefType "journal-article" @default.
- W2947806959 hasAuthorship W2947806959A5056691015 @default.
- W2947806959 hasAuthorship W2947806959A5072742271 @default.
- W2947806959 hasBestOaLocation W29478069591 @default.
- W2947806959 hasConcept C119599485 @default.
- W2947806959 hasConcept C127413603 @default.
- W2947806959 hasConcept C154945302 @default.
- W2947806959 hasConcept C165801399 @default.
- W2947806959 hasConcept C184773241 @default.
- W2947806959 hasConcept C193809577 @default.
- W2947806959 hasConcept C206658404 @default.
- W2947806959 hasConcept C2775924081 @default.
- W2947806959 hasConcept C2776784348 @default.
- W2947806959 hasConcept C2779438525 @default.
- W2947806959 hasConcept C41008148 @default.
- W2947806959 hasConcept C42475967 @default.
- W2947806959 hasConcept C50644808 @default.
- W2947806959 hasConceptScore W2947806959C119599485 @default.
- W2947806959 hasConceptScore W2947806959C127413603 @default.
- W2947806959 hasConceptScore W2947806959C154945302 @default.
- W2947806959 hasConceptScore W2947806959C165801399 @default.
- W2947806959 hasConceptScore W2947806959C184773241 @default.
- W2947806959 hasConceptScore W2947806959C193809577 @default.
- W2947806959 hasConceptScore W2947806959C206658404 @default.
- W2947806959 hasConceptScore W2947806959C2775924081 @default.
- W2947806959 hasConceptScore W2947806959C2776784348 @default.
- W2947806959 hasConceptScore W2947806959C2779438525 @default.
- W2947806959 hasConceptScore W2947806959C41008148 @default.
- W2947806959 hasConceptScore W2947806959C42475967 @default.
- W2947806959 hasConceptScore W2947806959C50644808 @default.
- W2947806959 hasIssue "6" @default.
- W2947806959 hasLocation W29478069591 @default.
- W2947806959 hasLocation W29478069592 @default.
- W2947806959 hasOpenAccess W2947806959 @default.
- W2947806959 hasPrimaryLocation W29478069591 @default.
- W2947806959 hasRelatedWork W1973124801 @default.
- W2947806959 hasRelatedWork W1997898472 @default.
- W2947806959 hasRelatedWork W2052056633 @default.
- W2947806959 hasRelatedWork W2090742221 @default.
- W2947806959 hasRelatedWork W2546294654 @default.
- W2947806959 hasRelatedWork W2735709564 @default.
- W2947806959 hasRelatedWork W2891855410 @default.
- W2947806959 hasRelatedWork W2948041165 @default.
- W2947806959 hasRelatedWork W3106590810 @default.
- W2947806959 hasRelatedWork W3111310135 @default.
- W2947806959 hasVolume "7" @default.
- W2947806959 isParatext "false" @default.
- W2947806959 isRetracted "false" @default.
- W2947806959 magId "2947806959" @default.
- W2947806959 workType "article" @default.