Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947809318> ?p ?o ?g. }
- W2947809318 endingPage "e025915" @default.
- W2947809318 startingPage "e025915" @default.
- W2947809318 abstract "Objectives Recent dramatic increases in cardiovascular disease mortality in China can be mostly explained by adverse changes in hypertension, dyslipidaemia, diabetes and obesity, known as cardiometabolic risk factors. Our study aimed to assess the trend of these four signatures by a 10-year lag in Nanjing, China. Methods 8017 subjects attended the routine health examination in 2008, and 9379 subjects in 2017, from multiple work units of Nanjing, were included in the present study. The prevalence and trend of four cardiometabolic risk factors: hypertension, dyslipidaemia, diabetes and obesity were analysed. Results From 2008 to 2017, the prevalence of hypertension declined, while the prevalence of dyslipidaemia, diabetes and obesity increased. Besides, the population in 2008 and 2017 had an average of 0.66 and 0.78 risk factors, respectively. Conclusion Cardiometabolic risk factors are common for the staff in administrative agencies and institutions of Nanjing, China. Effective screening and interventions against these risk factors should be adopted in high-risk populations such as the office-working population in China." @default.
- W2947809318 created "2019-06-07" @default.
- W2947809318 creator A5030742167 @default.
- W2947809318 creator A5032251226 @default.
- W2947809318 creator A5039012034 @default.
- W2947809318 creator A5040256312 @default.
- W2947809318 creator A5041835675 @default.
- W2947809318 creator A5044811331 @default.
- W2947809318 creator A5044829924 @default.
- W2947809318 creator A5046217188 @default.
- W2947809318 creator A5051490472 @default.
- W2947809318 creator A5056995940 @default.
- W2947809318 creator A5082654306 @default.
- W2947809318 creator A5089160559 @default.
- W2947809318 date "2019-05-01" @default.
- W2947809318 modified "2023-10-15" @default.
- W2947809318 title "Time trend of cardiometabolic risk factors over a 10-year period in the office-working population in China" @default.
- W2947809318 cites W1480729244 @default.
- W2947809318 cites W1486641695 @default.
- W2947809318 cites W1582447064 @default.
- W2947809318 cites W1708926012 @default.
- W2947809318 cites W1972668441 @default.
- W2947809318 cites W1974892271 @default.
- W2947809318 cites W2000816992 @default.
- W2947809318 cites W2002861144 @default.
- W2947809318 cites W2006941271 @default.
- W2947809318 cites W2020593578 @default.
- W2947809318 cites W2024096370 @default.
- W2947809318 cites W2033048555 @default.
- W2947809318 cites W2053369310 @default.
- W2947809318 cites W2054615926 @default.
- W2947809318 cites W2054931962 @default.
- W2947809318 cites W2055919664 @default.
- W2947809318 cites W2056526409 @default.
- W2947809318 cites W2065779552 @default.
- W2947809318 cites W2068250128 @default.
- W2947809318 cites W2068908293 @default.
- W2947809318 cites W2070644228 @default.
- W2947809318 cites W2074064272 @default.
- W2947809318 cites W2089780821 @default.
- W2947809318 cites W2093462237 @default.
- W2947809318 cites W2093974904 @default.
- W2947809318 cites W2107959194 @default.
- W2947809318 cites W2121490027 @default.
- W2947809318 cites W2122624008 @default.
- W2947809318 cites W2130189158 @default.
- W2947809318 cites W2130266732 @default.
- W2947809318 cites W2139594529 @default.
- W2947809318 cites W2142472354 @default.
- W2947809318 cites W2143938449 @default.
- W2947809318 cites W2150650272 @default.
- W2947809318 cites W2155121555 @default.
- W2947809318 cites W2158569927 @default.
- W2947809318 cites W2159084635 @default.
- W2947809318 cites W2162726387 @default.
- W2947809318 cites W2164001662 @default.
- W2947809318 cites W2166520734 @default.
- W2947809318 cites W2341244791 @default.
- W2947809318 cites W2347010770 @default.
- W2947809318 cites W2401599758 @default.
- W2947809318 cites W2516206920 @default.
- W2947809318 cites W2561445613 @default.
- W2947809318 cites W2605469403 @default.
- W2947809318 cites W3175048990 @default.
- W2947809318 cites W3216513478 @default.
- W2947809318 cites W4214826712 @default.
- W2947809318 cites W75245760 @default.
- W2947809318 doi "https://doi.org/10.1136/bmjopen-2018-025915" @default.
- W2947809318 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6549710" @default.
- W2947809318 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31154304" @default.
- W2947809318 hasPublicationYear "2019" @default.
- W2947809318 type Work @default.
- W2947809318 sameAs 2947809318 @default.
- W2947809318 citedByCount "4" @default.
- W2947809318 countsByYear W29478093182020 @default.
- W2947809318 countsByYear W29478093182022 @default.
- W2947809318 crossrefType "journal-article" @default.
- W2947809318 hasAuthorship W2947809318A5030742167 @default.
- W2947809318 hasAuthorship W2947809318A5032251226 @default.
- W2947809318 hasAuthorship W2947809318A5039012034 @default.
- W2947809318 hasAuthorship W2947809318A5040256312 @default.
- W2947809318 hasAuthorship W2947809318A5041835675 @default.
- W2947809318 hasAuthorship W2947809318A5044811331 @default.
- W2947809318 hasAuthorship W2947809318A5044829924 @default.
- W2947809318 hasAuthorship W2947809318A5046217188 @default.
- W2947809318 hasAuthorship W2947809318A5051490472 @default.
- W2947809318 hasAuthorship W2947809318A5056995940 @default.
- W2947809318 hasAuthorship W2947809318A5082654306 @default.
- W2947809318 hasAuthorship W2947809318A5089160559 @default.
- W2947809318 hasBestOaLocation W29478093181 @default.
- W2947809318 hasConcept C107130276 @default.
- W2947809318 hasConcept C126322002 @default.
- W2947809318 hasConcept C134018914 @default.
- W2947809318 hasConcept C144024400 @default.
- W2947809318 hasConcept C149923435 @default.
- W2947809318 hasConcept C17744445 @default.
- W2947809318 hasConcept C191935318 @default.
- W2947809318 hasConcept C199539241 @default.