Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947847183> ?p ?o ?g. }
- W2947847183 endingPage "1282" @default.
- W2947847183 startingPage "1282" @default.
- W2947847183 abstract "In the cities of the Global South, slum settlements are growing in size and number, but their locations and characteristics are often missing in official statistics and maps. Although several studies have focused on detecting slums from satellite images, only a few captured their variations. This study addresses this gap using an integrated approach that can identify a slums’ degree of deprivation in terms of socio-economic variability in Bangalore, India using image features derived from very high resolution (VHR) satellite images. To characterize deprivation, we use multiple correspondence analysis (MCA) and quantify deprivation with a data-driven index of multiple deprivation (DIMD). We take advantage of spatial features learned by a convolutional neural network (CNN) from VHR satellite images to predict the DIMD. To deal with a small training dataset of only 121 samples with known DIMD values, insufficient to train a deep CNN, we conduct a two-step transfer learning approach using 1461 delineated slum boundaries as follows. First, a CNN is trained using these samples to classify slums and formal areas. The trained network is then fine-tuned using the 121 samples to directly predict the DIMD. The best prediction is obtained by using an ensemble non-linear regression model, combining the results of the CNN and models based on hand-crafted and geographic information system (GIS) features, with R2 of 0.75. Our findings show that using the proposed two-step transfer learning approach, a deep CNN can be trained with a limited number of samples to predict the slums’ degree of deprivation. This demonstrates that the CNN-based approach can capture variations of deprivation in VHR images, providing a comprehensive understanding of the socio-economic situation of slums in Bangalore." @default.
- W2947847183 created "2019-06-07" @default.
- W2947847183 creator A5023723630 @default.
- W2947847183 creator A5029035818 @default.
- W2947847183 creator A5059871347 @default.
- W2947847183 creator A5078575135 @default.
- W2947847183 date "2019-05-29" @default.
- W2947847183 modified "2023-09-30" @default.
- W2947847183 title "Identifying a Slums’ Degree of Deprivation from VHR Images Using Convolutional Neural Networks" @default.
- W2947847183 cites W1628406596 @default.
- W2947847183 cites W1872292657 @default.
- W2947847183 cites W1978414011 @default.
- W2947847183 cites W1999153327 @default.
- W2947847183 cites W2002385403 @default.
- W2947847183 cites W2013142182 @default.
- W2947847183 cites W2021499525 @default.
- W2947847183 cites W2023220005 @default.
- W2947847183 cites W2028063078 @default.
- W2947847183 cites W2029314279 @default.
- W2947847183 cites W2067654461 @default.
- W2947847183 cites W2083061291 @default.
- W2947847183 cites W2094334758 @default.
- W2947847183 cites W2107588613 @default.
- W2947847183 cites W2112585194 @default.
- W2947847183 cites W2163352848 @default.
- W2947847183 cites W2338897872 @default.
- W2947847183 cites W2495372915 @default.
- W2947847183 cites W2513506629 @default.
- W2947847183 cites W2588173298 @default.
- W2947847183 cites W2606251026 @default.
- W2947847183 cites W2610932088 @default.
- W2947847183 cites W2613506742 @default.
- W2947847183 cites W2618530766 @default.
- W2947847183 cites W2732528179 @default.
- W2947847183 cites W2765226977 @default.
- W2947847183 cites W2784210701 @default.
- W2947847183 cites W2790886567 @default.
- W2947847183 cites W2792491666 @default.
- W2947847183 cites W2792900864 @default.
- W2947847183 cites W2803946774 @default.
- W2947847183 cites W2810004461 @default.
- W2947847183 cites W2894677700 @default.
- W2947847183 cites W3100561351 @default.
- W2947847183 cites W3106324661 @default.
- W2947847183 cites W3123267936 @default.
- W2947847183 cites W4248710273 @default.
- W2947847183 doi "https://doi.org/10.3390/rs11111282" @default.
- W2947847183 hasPublicationYear "2019" @default.
- W2947847183 type Work @default.
- W2947847183 sameAs 2947847183 @default.
- W2947847183 citedByCount "38" @default.
- W2947847183 countsByYear W29478471832019 @default.
- W2947847183 countsByYear W29478471832020 @default.
- W2947847183 countsByYear W29478471832021 @default.
- W2947847183 countsByYear W29478471832022 @default.
- W2947847183 countsByYear W29478471832023 @default.
- W2947847183 crossrefType "journal-article" @default.
- W2947847183 hasAuthorship W2947847183A5023723630 @default.
- W2947847183 hasAuthorship W2947847183A5029035818 @default.
- W2947847183 hasAuthorship W2947847183A5059871347 @default.
- W2947847183 hasAuthorship W2947847183A5078575135 @default.
- W2947847183 hasBestOaLocation W29478471831 @default.
- W2947847183 hasConcept C108583219 @default.
- W2947847183 hasConcept C121332964 @default.
- W2947847183 hasConcept C144024400 @default.
- W2947847183 hasConcept C149923435 @default.
- W2947847183 hasConcept C150899416 @default.
- W2947847183 hasConcept C153180895 @default.
- W2947847183 hasConcept C154945302 @default.
- W2947847183 hasConcept C205649164 @default.
- W2947847183 hasConcept C24890656 @default.
- W2947847183 hasConcept C2775997480 @default.
- W2947847183 hasConcept C2778631157 @default.
- W2947847183 hasConcept C2908647359 @default.
- W2947847183 hasConcept C41008148 @default.
- W2947847183 hasConcept C50644808 @default.
- W2947847183 hasConcept C81363708 @default.
- W2947847183 hasConceptScore W2947847183C108583219 @default.
- W2947847183 hasConceptScore W2947847183C121332964 @default.
- W2947847183 hasConceptScore W2947847183C144024400 @default.
- W2947847183 hasConceptScore W2947847183C149923435 @default.
- W2947847183 hasConceptScore W2947847183C150899416 @default.
- W2947847183 hasConceptScore W2947847183C153180895 @default.
- W2947847183 hasConceptScore W2947847183C154945302 @default.
- W2947847183 hasConceptScore W2947847183C205649164 @default.
- W2947847183 hasConceptScore W2947847183C24890656 @default.
- W2947847183 hasConceptScore W2947847183C2775997480 @default.
- W2947847183 hasConceptScore W2947847183C2778631157 @default.
- W2947847183 hasConceptScore W2947847183C2908647359 @default.
- W2947847183 hasConceptScore W2947847183C41008148 @default.
- W2947847183 hasConceptScore W2947847183C50644808 @default.
- W2947847183 hasConceptScore W2947847183C81363708 @default.
- W2947847183 hasFunder F4320321800 @default.
- W2947847183 hasIssue "11" @default.
- W2947847183 hasLocation W29478471831 @default.
- W2947847183 hasLocation W29478471832 @default.
- W2947847183 hasLocation W29478471833 @default.
- W2947847183 hasOpenAccess W2947847183 @default.