Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947860185> ?p ?o ?g. }
- W2947860185 endingPage "70642" @default.
- W2947860185 startingPage "70634" @default.
- W2947860185 abstract "Novel techniques in deep learning networks are proposed for the staked sparse autoencoder (SAE) and the bagged decision tree (TreeBagger), achieving significant improvement in detection and localization of myocardial infarction (MI) from single-lead electrocardiograph (ECG) signals. With our layer-wise training strategies, the SAE-based diagnostic feature extraction network can automatically and steadily extract the deep distinguishing diagnostic features of the single-lead ECG signals and avoid the vanishing gradient problem. This feature extraction network is formed by stacking shallow SAEs. In addition, to automatically learn the stable distinctive feature expression of the label-less input ECG signals, this feature extraction network adopts unsupervised learning. Moreover, TreeBagger classifier can optimize the results of multiple decision trees to more accurately detect and localize MI. The experiment and verification datasets include healthy controls, various types of MI with anterior, anterior lateral, anterior septal, anterior septal lateral, inferior, inferior lateral, inferior posterior, inferior posterior lateral, lateral, posterior, and posterior lateral, from PTB diagnostic ECG database. The evaluation results show that the new techniques can effectively and accurately detect and localize the MI pathologies. For MI detection, the accuracy, the sensitivity, and the specificity rates achieve as high as 99.90%, 99.98%, and 99.52%, respectively. For MI localization, we obtain consistent results with the accuracy of 98.88%, sensitivity 99.95%, and specificity 99.87%. The comparative studies are conducted with the state-of-the-art techniques, and significant improvements by our methods are presented in the context. Success in the development of the accurate and comprehensive tool greatly helps the cardiologists in detection and localization of the single-lead ECG signals of MI." @default.
- W2947860185 created "2019-06-07" @default.
- W2947860185 creator A5006890334 @default.
- W2947860185 creator A5009172382 @default.
- W2947860185 creator A5011611619 @default.
- W2947860185 creator A5019653584 @default.
- W2947860185 creator A5065679716 @default.
- W2947860185 creator A5079018005 @default.
- W2947860185 creator A5085432792 @default.
- W2947860185 creator A5090233617 @default.
- W2947860185 date "2019-01-01" @default.
- W2947860185 modified "2023-10-16" @default.
- W2947860185 title "Automated Detection and Localization of Myocardial Infarction With Staked Sparse Autoencoder and TreeBagger" @default.
- W2947860185 cites W1970158471 @default.
- W2947860185 cites W1972003923 @default.
- W2947860185 cites W1984595010 @default.
- W2947860185 cites W2022691337 @default.
- W2947860185 cites W2047181473 @default.
- W2947860185 cites W2070191134 @default.
- W2947860185 cites W2077430201 @default.
- W2947860185 cites W2117736816 @default.
- W2947860185 cites W2131740154 @default.
- W2947860185 cites W2162273778 @default.
- W2947860185 cites W2162800060 @default.
- W2947860185 cites W2180889008 @default.
- W2947860185 cites W2219972493 @default.
- W2947860185 cites W2345653080 @default.
- W2947860185 cites W2495557304 @default.
- W2947860185 cites W2512426799 @default.
- W2947860185 cites W2555730650 @default.
- W2947860185 cites W2702116941 @default.
- W2947860185 cites W2754331792 @default.
- W2947860185 cites W2755499309 @default.
- W2947860185 cites W2767583913 @default.
- W2947860185 cites W2775521641 @default.
- W2947860185 cites W2791509447 @default.
- W2947860185 cites W2796148034 @default.
- W2947860185 cites W2804642894 @default.
- W2947860185 cites W2884483862 @default.
- W2947860185 cites W2888543854 @default.
- W2947860185 cites W2913789442 @default.
- W2947860185 cites W2914231497 @default.
- W2947860185 doi "https://doi.org/10.1109/access.2019.2919068" @default.
- W2947860185 hasPublicationYear "2019" @default.
- W2947860185 type Work @default.
- W2947860185 sameAs 2947860185 @default.
- W2947860185 citedByCount "41" @default.
- W2947860185 countsByYear W29478601852019 @default.
- W2947860185 countsByYear W29478601852020 @default.
- W2947860185 countsByYear W29478601852021 @default.
- W2947860185 countsByYear W29478601852022 @default.
- W2947860185 countsByYear W29478601852023 @default.
- W2947860185 crossrefType "journal-article" @default.
- W2947860185 hasAuthorship W2947860185A5006890334 @default.
- W2947860185 hasAuthorship W2947860185A5009172382 @default.
- W2947860185 hasAuthorship W2947860185A5011611619 @default.
- W2947860185 hasAuthorship W2947860185A5019653584 @default.
- W2947860185 hasAuthorship W2947860185A5065679716 @default.
- W2947860185 hasAuthorship W2947860185A5079018005 @default.
- W2947860185 hasAuthorship W2947860185A5085432792 @default.
- W2947860185 hasAuthorship W2947860185A5090233617 @default.
- W2947860185 hasBestOaLocation W29478601851 @default.
- W2947860185 hasConcept C101738243 @default.
- W2947860185 hasConcept C108583219 @default.
- W2947860185 hasConcept C127313418 @default.
- W2947860185 hasConcept C151730666 @default.
- W2947860185 hasConcept C153180895 @default.
- W2947860185 hasConcept C154945302 @default.
- W2947860185 hasConcept C164705383 @default.
- W2947860185 hasConcept C2779343474 @default.
- W2947860185 hasConcept C2780040984 @default.
- W2947860185 hasConcept C41008148 @default.
- W2947860185 hasConcept C52622490 @default.
- W2947860185 hasConcept C71924100 @default.
- W2947860185 hasConcept C84525736 @default.
- W2947860185 hasConcept C95623464 @default.
- W2947860185 hasConceptScore W2947860185C101738243 @default.
- W2947860185 hasConceptScore W2947860185C108583219 @default.
- W2947860185 hasConceptScore W2947860185C127313418 @default.
- W2947860185 hasConceptScore W2947860185C151730666 @default.
- W2947860185 hasConceptScore W2947860185C153180895 @default.
- W2947860185 hasConceptScore W2947860185C154945302 @default.
- W2947860185 hasConceptScore W2947860185C164705383 @default.
- W2947860185 hasConceptScore W2947860185C2779343474 @default.
- W2947860185 hasConceptScore W2947860185C2780040984 @default.
- W2947860185 hasConceptScore W2947860185C41008148 @default.
- W2947860185 hasConceptScore W2947860185C52622490 @default.
- W2947860185 hasConceptScore W2947860185C71924100 @default.
- W2947860185 hasConceptScore W2947860185C84525736 @default.
- W2947860185 hasConceptScore W2947860185C95623464 @default.
- W2947860185 hasFunder F4320321001 @default.
- W2947860185 hasFunder F4320322163 @default.
- W2947860185 hasLocation W29478601851 @default.
- W2947860185 hasLocation W29478601852 @default.
- W2947860185 hasOpenAccess W2947860185 @default.
- W2947860185 hasPrimaryLocation W29478601851 @default.
- W2947860185 hasRelatedWork W1576462183 @default.
- W2947860185 hasRelatedWork W2592385986 @default.