Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947867080> ?p ?o ?g. }
- W2947867080 endingPage "5895" @default.
- W2947867080 startingPage "5879" @default.
- W2947867080 abstract "Abstract. Measuring vertical profiles of the particle light-absorption coefficient by using absorption photometers may face the challenge of fast changes in relative humidity (RH). These absorption photometers determine the particle light-absorption coefficient due to a change in light attenuation through a particle-loaded filter. The filter material, however, takes up or releases water with changing relative humidity (RH in %), thus influencing the light attenuation. A sophisticated set of laboratory experiments was therefore conducted to investigate the effect of fast RH changes (dRH ∕ dt) on the particle light-absorption coefficient (σabs in Mm−1) derived with two absorption photometers. The RH dependence was examined based on different filter types and filter loadings with respect to loading material and areal loading density. The Single Channel Tricolor Absorption Photometer (STAP) relies on quartz-fiber filter, and the microAeth® MA200 is based on a polytetrafluoroethylene (PTFE) filter band. Furthermore, three cases were investigated: clean filters, filters loaded with black carbon (BC), and filters loaded with ammonium sulfate. The filter areal loading densities (ρ*) ranged from 3.1 to 99.6 mg m−2 in the case of the STAP and ammonium sulfate and 1.2 to 37.6 mg m−2 in the case the MA200. Investigating BC-loaded cases, ρBC* was in the range of 2.9 to 43.0 and 1.1 to 16.3 mg m−2 for the STAP and MA200, respectively. Both instruments revealed opposing responses to relative humidity changes (ΔRH) with different magnitudes. The STAP shows a linear dependence on relative humidity changes. The MA200 is characterized by a distinct exponential recovery after its filter was exposed to relative humidity changes. At a wavelength of 624 nm and for the default 60 s running average output, the STAP reveals an absolute change in σabs per absolute change of RH (Δσabs∕ΔRH) of 0.14 Mm−1 %−1 in the clean case, 0.29 Mm−1 %−1 in the case of BC-loaded filters, and 0.21 Mm−1 %−1 in the case filters loaded with ammonium sulfate. The 60 s running average of the particle light-absorption coefficient at 625 nm measured with the MA200 revealed a response of around −0.4 Mm−1 %−1 for all three cases. Whereas the response of the STAP varies over the different loading materials, in contrast, the MA200 was quite stable. The response was, for the STAP, in the range of 0.17 to 0.24 Mm−1 %−1 and, in the case of ammonium sulfate loading and in the BC-loaded case, 0.17 to 0.62 Mm−1 %−1. In the ammonium sulfate case, the minimum response shown by the MA200 was −0.42 with a maximum of −0.36 Mm−1 %−1 and a minimum of −0.42 and maximum −0.37 Mm−1 %−1 in the case of BC. A linear correction function for the STAP was developed here. It is provided by correlating 1 Hz resolved recalculated particle light-absorption coefficients and RH change rates. The linear response is estimated at 10.08 Mm−1 s−1 %−1. A correction approach for the MA200 is also provided; however, the behavior of the MA200 is more complex. Further research and multi-instrument measurements have to be conducted to fully understand the underlying processes, since the correction approach resulted in different correction parameters across various experiments. However, the exponential recovery after the filter of the MA200 experienced a RH change could be reproduced. However, the given correction approach has to be estimated with other RH sensors as well, since each sensor has a different response time. And, for the given correction approaches, the uncertainties could not be estimated, which was mainly due to the response time of the RH sensor. Therefore, we do not recommend using the given approaches. But they point in the right direction, and despite the imperfections, they are useful for at least estimating the measurement uncertainties due to relative humidity changes. Due to our findings, we recommend using an aerosol dryer upstream of absorption photometers to reduce the RH effect significantly. Furthermore, when absorption photometers are used in vertical measurements, the ascending or descending speed through layers of large relative humidity gradients has to be low to minimize the observed RH effect. But this is simply not possible in some scenarios, especially in unmixed layers or clouds. Additionally, recording the RH of the sample stream allows correcting for the bias during post-processing of the data. This data correction leads to reasonable results, according to the given example in this study." @default.
- W2947867080 created "2019-06-07" @default.
- W2947867080 creator A5023907818 @default.
- W2947867080 creator A5052166339 @default.
- W2947867080 creator A5067143637 @default.
- W2947867080 creator A5079221039 @default.
- W2947867080 creator A5087311513 @default.
- W2947867080 date "2019-11-08" @default.
- W2947867080 modified "2023-09-27" @default.
- W2947867080 title "The effect of rapid relative humidity changes on fast filter-based aerosol-particle light-absorption measurements: uncertainties and correction schemes" @default.
- W2947867080 cites W1679833810 @default.
- W2947867080 cites W1964025215 @default.
- W2947867080 cites W1988880047 @default.
- W2947867080 cites W2016880242 @default.
- W2947867080 cites W2018554649 @default.
- W2947867080 cites W2021606238 @default.
- W2947867080 cites W2036745747 @default.
- W2947867080 cites W2043266538 @default.
- W2947867080 cites W2057479843 @default.
- W2947867080 cites W2072277289 @default.
- W2947867080 cites W2072876617 @default.
- W2947867080 cites W2077752919 @default.
- W2947867080 cites W2083988711 @default.
- W2947867080 cites W2097014927 @default.
- W2947867080 cites W2111570465 @default.
- W2947867080 cites W2336981264 @default.
- W2947867080 cites W2337616138 @default.
- W2947867080 cites W2340031338 @default.
- W2947867080 cites W2559457374 @default.
- W2947867080 cites W2590682945 @default.
- W2947867080 cites W2623184527 @default.
- W2947867080 cites W2741496491 @default.
- W2947867080 cites W2784019870 @default.
- W2947867080 cites W2787098455 @default.
- W2947867080 cites W2947626232 @default.
- W2947867080 cites W4231057675 @default.
- W2947867080 cites W4255632308 @default.
- W2947867080 doi "https://doi.org/10.5194/amt-12-5879-2019" @default.
- W2947867080 hasPublicationYear "2019" @default.
- W2947867080 type Work @default.
- W2947867080 sameAs 2947867080 @default.
- W2947867080 citedByCount "14" @default.
- W2947867080 countsByYear W29478670802020 @default.
- W2947867080 countsByYear W29478670802021 @default.
- W2947867080 countsByYear W29478670802022 @default.
- W2947867080 countsByYear W29478670802023 @default.
- W2947867080 crossrefType "journal-article" @default.
- W2947867080 hasAuthorship W2947867080A5023907818 @default.
- W2947867080 hasAuthorship W2947867080A5052166339 @default.
- W2947867080 hasAuthorship W2947867080A5067143637 @default.
- W2947867080 hasAuthorship W2947867080A5079221039 @default.
- W2947867080 hasAuthorship W2947867080A5087311513 @default.
- W2947867080 hasBestOaLocation W29478670801 @default.
- W2947867080 hasConcept C106131492 @default.
- W2947867080 hasConcept C111368507 @default.
- W2947867080 hasConcept C113196181 @default.
- W2947867080 hasConcept C11494860 @default.
- W2947867080 hasConcept C120665830 @default.
- W2947867080 hasConcept C121332964 @default.
- W2947867080 hasConcept C125287762 @default.
- W2947867080 hasConcept C127313418 @default.
- W2947867080 hasConcept C147789679 @default.
- W2947867080 hasConcept C151420433 @default.
- W2947867080 hasConcept C153294291 @default.
- W2947867080 hasConcept C158960510 @default.
- W2947867080 hasConcept C159774933 @default.
- W2947867080 hasConcept C159985019 @default.
- W2947867080 hasConcept C178790620 @default.
- W2947867080 hasConcept C184652730 @default.
- W2947867080 hasConcept C185592680 @default.
- W2947867080 hasConcept C187530423 @default.
- W2947867080 hasConcept C192562407 @default.
- W2947867080 hasConcept C2778517922 @default.
- W2947867080 hasConcept C2779345167 @default.
- W2947867080 hasConcept C31972630 @default.
- W2947867080 hasConcept C41008148 @default.
- W2947867080 hasConcept C43617362 @default.
- W2947867080 hasConceptScore W2947867080C106131492 @default.
- W2947867080 hasConceptScore W2947867080C111368507 @default.
- W2947867080 hasConceptScore W2947867080C113196181 @default.
- W2947867080 hasConceptScore W2947867080C11494860 @default.
- W2947867080 hasConceptScore W2947867080C120665830 @default.
- W2947867080 hasConceptScore W2947867080C121332964 @default.
- W2947867080 hasConceptScore W2947867080C125287762 @default.
- W2947867080 hasConceptScore W2947867080C127313418 @default.
- W2947867080 hasConceptScore W2947867080C147789679 @default.
- W2947867080 hasConceptScore W2947867080C151420433 @default.
- W2947867080 hasConceptScore W2947867080C153294291 @default.
- W2947867080 hasConceptScore W2947867080C158960510 @default.
- W2947867080 hasConceptScore W2947867080C159774933 @default.
- W2947867080 hasConceptScore W2947867080C159985019 @default.
- W2947867080 hasConceptScore W2947867080C178790620 @default.
- W2947867080 hasConceptScore W2947867080C184652730 @default.
- W2947867080 hasConceptScore W2947867080C185592680 @default.
- W2947867080 hasConceptScore W2947867080C187530423 @default.
- W2947867080 hasConceptScore W2947867080C192562407 @default.
- W2947867080 hasConceptScore W2947867080C2778517922 @default.
- W2947867080 hasConceptScore W2947867080C2779345167 @default.