Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947917197> ?p ?o ?g. }
- W2947917197 endingPage "15" @default.
- W2947917197 startingPage "1" @default.
- W2947917197 abstract "Crop biomass is an agricultural indicator of productivity, and knowledge of the temporal and spatial variation in biomass in different topography is critical for the application of precision management techniques. This study integrates microtopography with multitemporal remote sensing observations to reveal biomass- and yield-limiting variables. Three SPOT-6 high spatial resolution images and six topographic variables were combined to model the spatial variation in soybean biomass at multiple stages during the growing season. The results showed the following. (i) The multiple regression model for biomass estimation that combines topographic variables with vegetation indices can achieve higher accuracy than a vegetation index model. (ii) Biomass varied dramatically with topography during the growing season. (iii) Microtopographic variables, such as curvature and slope, had distinctive impacts on crop conditions over a growing season. Early in the growing season, sunny upper slopes produced more biomass than shady lower slopes, whereas this trend reversed over the season. Gentle concave slopes (–1.2 m−1 < curvature < 0 m−1) showed greater productivity later in the season, while slopes with high concavity (curvature < –1.2 m−1) or high convexity (curvature > 0.75 m−1) suppressed crop growth. These conclusions can be used directly to precisely manage nutrients and water applications." @default.
- W2947917197 created "2019-06-07" @default.
- W2947917197 creator A5000343590 @default.
- W2947917197 creator A5005373097 @default.
- W2947917197 creator A5015371158 @default.
- W2947917197 creator A5021848271 @default.
- W2947917197 creator A5023722126 @default.
- W2947917197 creator A5064481120 @default.
- W2947917197 creator A5076822296 @default.
- W2947917197 creator A5077391385 @default.
- W2947917197 date "2019-01-02" @default.
- W2947917197 modified "2023-09-24" @default.
- W2947917197 title "Multistage Soybean Biomass Inversion Models and Spatiotemporal Analyses considering Microtopography at the Sub-Field Scale" @default.
- W2947917197 cites W1826962995 @default.
- W2947917197 cites W1894940466 @default.
- W2947917197 cites W1974328142 @default.
- W2947917197 cites W1978608405 @default.
- W2947917197 cites W1979583486 @default.
- W2947917197 cites W1994823743 @default.
- W2947917197 cites W1997278132 @default.
- W2947917197 cites W2000613913 @default.
- W2947917197 cites W2002016471 @default.
- W2947917197 cites W2030959142 @default.
- W2947917197 cites W2037308434 @default.
- W2947917197 cites W2043294670 @default.
- W2947917197 cites W2057820108 @default.
- W2947917197 cites W2059445175 @default.
- W2947917197 cites W2060426168 @default.
- W2947917197 cites W2073669453 @default.
- W2947917197 cites W2079666223 @default.
- W2947917197 cites W2087536601 @default.
- W2947917197 cites W2089441588 @default.
- W2947917197 cites W2112081648 @default.
- W2947917197 cites W2122562142 @default.
- W2947917197 cites W21296596 @default.
- W2947917197 cites W2138446483 @default.
- W2947917197 cites W2143296882 @default.
- W2947917197 cites W2159649202 @default.
- W2947917197 cites W2182996245 @default.
- W2947917197 cites W2195363413 @default.
- W2947917197 cites W2200121095 @default.
- W2947917197 cites W2335708041 @default.
- W2947917197 cites W2494578750 @default.
- W2947917197 cites W2554164274 @default.
- W2947917197 cites W2564375256 @default.
- W2947917197 cites W2582794771 @default.
- W2947917197 cites W2754540468 @default.
- W2947917197 cites W2888753230 @default.
- W2947917197 cites W4229862041 @default.
- W2947917197 cites W4246099081 @default.
- W2947917197 cites W4249220518 @default.
- W2947917197 doi "https://doi.org/10.1080/07038992.2019.1594176" @default.
- W2947917197 hasPublicationYear "2019" @default.
- W2947917197 type Work @default.
- W2947917197 sameAs 2947917197 @default.
- W2947917197 citedByCount "3" @default.
- W2947917197 countsByYear W29479171972022 @default.
- W2947917197 crossrefType "journal-article" @default.
- W2947917197 hasAuthorship W2947917197A5000343590 @default.
- W2947917197 hasAuthorship W2947917197A5005373097 @default.
- W2947917197 hasAuthorship W2947917197A5015371158 @default.
- W2947917197 hasAuthorship W2947917197A5021848271 @default.
- W2947917197 hasAuthorship W2947917197A5023722126 @default.
- W2947917197 hasAuthorship W2947917197A5064481120 @default.
- W2947917197 hasAuthorship W2947917197A5076822296 @default.
- W2947917197 hasAuthorship W2947917197A5077391385 @default.
- W2947917197 hasConcept C100970517 @default.
- W2947917197 hasConcept C105795698 @default.
- W2947917197 hasConcept C115540264 @default.
- W2947917197 hasConcept C127313418 @default.
- W2947917197 hasConcept C137660486 @default.
- W2947917197 hasConcept C142724271 @default.
- W2947917197 hasConcept C158709400 @default.
- W2947917197 hasConcept C159390177 @default.
- W2947917197 hasConcept C187320778 @default.
- W2947917197 hasConcept C18903297 @default.
- W2947917197 hasConcept C195065555 @default.
- W2947917197 hasConcept C205649164 @default.
- W2947917197 hasConcept C2524010 @default.
- W2947917197 hasConcept C2776133958 @default.
- W2947917197 hasConcept C2778755073 @default.
- W2947917197 hasConcept C33923547 @default.
- W2947917197 hasConcept C39432304 @default.
- W2947917197 hasConcept C58640448 @default.
- W2947917197 hasConcept C62649853 @default.
- W2947917197 hasConcept C6557445 @default.
- W2947917197 hasConcept C71924100 @default.
- W2947917197 hasConcept C76886044 @default.
- W2947917197 hasConcept C86803240 @default.
- W2947917197 hasConcept C91586092 @default.
- W2947917197 hasConcept C94747663 @default.
- W2947917197 hasConceptScore W2947917197C100970517 @default.
- W2947917197 hasConceptScore W2947917197C105795698 @default.
- W2947917197 hasConceptScore W2947917197C115540264 @default.
- W2947917197 hasConceptScore W2947917197C127313418 @default.
- W2947917197 hasConceptScore W2947917197C137660486 @default.
- W2947917197 hasConceptScore W2947917197C142724271 @default.
- W2947917197 hasConceptScore W2947917197C158709400 @default.