Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947949571> ?p ?o ?g. }
- W2947949571 endingPage "4786" @default.
- W2947949571 startingPage "4773" @default.
- W2947949571 abstract "Automatic classification of sensitive content in remote sensing images, such as drug crop sites, is a promising task, as it can aid law-enforcement institutions in fighting illegal drug dealers worldwide, while, at the same time, it can help monitor legalized crops in countries that regulate them. However, existing art on detecting drug crops from remote sensing images is limited in some key factors, not taking full advantage of the available hyperspectral information for analysis. In this paper, departing from these methods, we propose a data-driven ensemble method to detect drug sites from remote sensing images. Our method comprises different convolutional neural network architectures applied to distinct image representations, which are able to represent complementary characterizations of such crops. To validate the proposed approach, we considered in our experiments a dataset containing Cannabis Sativa crops, spotted by police operations in a Brazilian region called the Marijuana Polygon. The results in this dataset show that our ensemble approach outperforms other data-driven and feature-engineering methods in a real-world experimental setup, in which unbalanced samples are present and acquisitions from different places in the same region are used for training and testing the methods, highlighting the promising use of this solution to aid police operations in detecting and collecting evidence of such sensitive content properly." @default.
- W2947949571 created "2019-06-07" @default.
- W2947949571 creator A5005754602 @default.
- W2947949571 creator A5043147904 @default.
- W2947949571 creator A5047964483 @default.
- W2947949571 creator A5057680257 @default.
- W2947949571 creator A5065041674 @default.
- W2947949571 creator A5067506984 @default.
- W2947949571 creator A5071973453 @default.
- W2947949571 creator A5086873271 @default.
- W2947949571 date "2019-12-01" @default.
- W2947949571 modified "2023-10-14" @default.
- W2947949571 title "Eyes in the Skies: A Data-Driven Fusion Approach to Identifying Drug Crops From Remote Sensing Images" @default.
- W2947949571 cites W1499958373 @default.
- W2947949571 cites W1677182931 @default.
- W2947949571 cites W1967891793 @default.
- W2947949571 cites W1972904756 @default.
- W2947949571 cites W1981468861 @default.
- W2947949571 cites W1988299413 @default.
- W2947949571 cites W1989085630 @default.
- W2947949571 cites W2002392274 @default.
- W2947949571 cites W2004826645 @default.
- W2947949571 cites W2008692870 @default.
- W2947949571 cites W2010560725 @default.
- W2947949571 cites W2016677690 @default.
- W2947949571 cites W2019590454 @default.
- W2947949571 cites W2029404450 @default.
- W2947949571 cites W2044465660 @default.
- W2947949571 cites W2059523177 @default.
- W2947949571 cites W2066834279 @default.
- W2947949571 cites W2074798700 @default.
- W2947949571 cites W2084413241 @default.
- W2947949571 cites W2092170487 @default.
- W2947949571 cites W2093378913 @default.
- W2947949571 cites W2097117768 @default.
- W2947949571 cites W2099129687 @default.
- W2947949571 cites W2110944945 @default.
- W2947949571 cites W2112397370 @default.
- W2947949571 cites W2112796928 @default.
- W2947949571 cites W2116929083 @default.
- W2947949571 cites W2119365557 @default.
- W2947949571 cites W2123543386 @default.
- W2947949571 cites W2139900591 @default.
- W2947949571 cites W2141423371 @default.
- W2947949571 cites W2148143831 @default.
- W2947949571 cites W215025509 @default.
- W2947949571 cites W2156366154 @default.
- W2947949571 cites W2161969291 @default.
- W2947949571 cites W2194775991 @default.
- W2947949571 cites W2283002322 @default.
- W2947949571 cites W2347115704 @default.
- W2947949571 cites W2408707284 @default.
- W2947949571 cites W2424278943 @default.
- W2947949571 cites W2482292925 @default.
- W2947949571 cites W2519338473 @default.
- W2947949571 cites W2521187057 @default.
- W2947949571 cites W2584714880 @default.
- W2947949571 cites W2604086375 @default.
- W2947949571 cites W2680780302 @default.
- W2947949571 cites W2734780326 @default.
- W2947949571 cites W2743020103 @default.
- W2947949571 cites W2781585953 @default.
- W2947949571 cites W2963446712 @default.
- W2947949571 cites W2978631110 @default.
- W2947949571 doi "https://doi.org/10.1109/jstars.2019.2917024" @default.
- W2947949571 hasPublicationYear "2019" @default.
- W2947949571 type Work @default.
- W2947949571 sameAs 2947949571 @default.
- W2947949571 citedByCount "11" @default.
- W2947949571 countsByYear W29479495712021 @default.
- W2947949571 countsByYear W29479495712022 @default.
- W2947949571 countsByYear W29479495712023 @default.
- W2947949571 crossrefType "journal-article" @default.
- W2947949571 hasAuthorship W2947949571A5005754602 @default.
- W2947949571 hasAuthorship W2947949571A5043147904 @default.
- W2947949571 hasAuthorship W2947949571A5047964483 @default.
- W2947949571 hasAuthorship W2947949571A5057680257 @default.
- W2947949571 hasAuthorship W2947949571A5065041674 @default.
- W2947949571 hasAuthorship W2947949571A5067506984 @default.
- W2947949571 hasAuthorship W2947949571A5071973453 @default.
- W2947949571 hasAuthorship W2947949571A5086873271 @default.
- W2947949571 hasConcept C108583219 @default.
- W2947949571 hasConcept C119857082 @default.
- W2947949571 hasConcept C124101348 @default.
- W2947949571 hasConcept C127313418 @default.
- W2947949571 hasConcept C138885662 @default.
- W2947949571 hasConcept C154945302 @default.
- W2947949571 hasConcept C159078339 @default.
- W2947949571 hasConcept C173163844 @default.
- W2947949571 hasConcept C17744445 @default.
- W2947949571 hasConcept C199539241 @default.
- W2947949571 hasConcept C26517878 @default.
- W2947949571 hasConcept C2776401178 @default.
- W2947949571 hasConcept C2778827112 @default.
- W2947949571 hasConcept C2780262971 @default.
- W2947949571 hasConcept C38652104 @default.
- W2947949571 hasConcept C41008148 @default.
- W2947949571 hasConcept C41895202 @default.