Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947956474> ?p ?o ?g. }
- W2947956474 endingPage "2228" @default.
- W2947956474 startingPage "2228" @default.
- W2947956474 abstract "The development of renewable energy and the increase of intermittent fluctuating loads have affected the power quality of power systems, and in the long run, damage the power equipment. In order to effectively analyze the quality of power signals, this paper proposes a method of signal feature capture and fault identification, as based on the extension neural network (ENN) algorithm combined with discrete wavelet transform (DWT) and Parseval’s theorem. First, the original power quality disturbance (PQD) transient signal was subjected to DWT, and its spectrum energy was calculated for each order of wavelet coefficients through Parseval’s theorem, in order to effectively intercept the eigenvalues of the original signal. Based on the features, the extension neural algorithm was used to establish a matter-element model of power quality disturbance identification. In addition, the correlation degree between the identification data and disturbance types was calculated to accurately identify the types of power failure. To verify the accuracy of the proposed method, five common power quality disturbances were analyzed, including voltage sag, voltage swell, power interruption, voltage flicker, and power harmonics. The results were then compared with those obtained from the back-propagation network (BPN), probabilistic neural network (PNN), extension method and a learning vector quantization network (LVQ). The results showed that the proposed method has shorter computation time (0.06 s), as well as higher identification accuracy at 99.62%, which is higher than the accuracy rates of the other four types." @default.
- W2947956474 created "2019-06-07" @default.
- W2947956474 creator A5011991791 @default.
- W2947956474 creator A5034368766 @default.
- W2947956474 creator A5059087818 @default.
- W2947956474 creator A5059329107 @default.
- W2947956474 date "2019-05-30" @default.
- W2947956474 modified "2023-10-16" @default.
- W2947956474 title "Application of Extension Neural Network with Discrete Wavelet Transform and Parseval’s Theorem for Power Quality Analysis" @default.
- W2947956474 cites W2000033381 @default.
- W2947956474 cites W2012315090 @default.
- W2947956474 cites W2018018829 @default.
- W2947956474 cites W2019971481 @default.
- W2947956474 cites W2021009631 @default.
- W2947956474 cites W2023311332 @default.
- W2947956474 cites W2029681577 @default.
- W2947956474 cites W2047172480 @default.
- W2947956474 cites W2049454744 @default.
- W2947956474 cites W2059734530 @default.
- W2947956474 cites W2076092817 @default.
- W2947956474 cites W2103320971 @default.
- W2947956474 cites W2120763044 @default.
- W2947956474 cites W2123070597 @default.
- W2947956474 cites W2134375758 @default.
- W2947956474 cites W2142674421 @default.
- W2947956474 cites W2170479596 @default.
- W2947956474 cites W2174926952 @default.
- W2947956474 cites W2273733858 @default.
- W2947956474 cites W2330605115 @default.
- W2947956474 cites W2461851250 @default.
- W2947956474 cites W2500580066 @default.
- W2947956474 cites W2529692997 @default.
- W2947956474 cites W2547361322 @default.
- W2947956474 cites W2613854425 @default.
- W2947956474 cites W2753004846 @default.
- W2947956474 cites W2763524503 @default.
- W2947956474 cites W2790072082 @default.
- W2947956474 cites W2792943854 @default.
- W2947956474 cites W2889695092 @default.
- W2947956474 cites W2898224185 @default.
- W2947956474 cites W2912816184 @default.
- W2947956474 cites W2921636307 @default.
- W2947956474 cites W2926173013 @default.
- W2947956474 doi "https://doi.org/10.3390/app9112228" @default.
- W2947956474 hasPublicationYear "2019" @default.
- W2947956474 type Work @default.
- W2947956474 sameAs 2947956474 @default.
- W2947956474 citedByCount "6" @default.
- W2947956474 countsByYear W29479564742019 @default.
- W2947956474 countsByYear W29479564742021 @default.
- W2947956474 countsByYear W29479564742022 @default.
- W2947956474 crossrefType "journal-article" @default.
- W2947956474 hasAuthorship W2947956474A5011991791 @default.
- W2947956474 hasAuthorship W2947956474A5034368766 @default.
- W2947956474 hasAuthorship W2947956474A5059087818 @default.
- W2947956474 hasAuthorship W2947956474A5059329107 @default.
- W2947956474 hasBestOaLocation W29479564741 @default.
- W2947956474 hasConcept C102519508 @default.
- W2947956474 hasConcept C11413529 @default.
- W2947956474 hasConcept C119599485 @default.
- W2947956474 hasConcept C121332964 @default.
- W2947956474 hasConcept C127413603 @default.
- W2947956474 hasConcept C134306372 @default.
- W2947956474 hasConcept C134342201 @default.
- W2947956474 hasConcept C153180895 @default.
- W2947956474 hasConcept C154945302 @default.
- W2947956474 hasConcept C163258240 @default.
- W2947956474 hasConcept C165801399 @default.
- W2947956474 hasConcept C175202392 @default.
- W2947956474 hasConcept C196216189 @default.
- W2947956474 hasConcept C203024314 @default.
- W2947956474 hasConcept C2775924081 @default.
- W2947956474 hasConcept C2779665505 @default.
- W2947956474 hasConcept C2781134633 @default.
- W2947956474 hasConcept C33923547 @default.
- W2947956474 hasConcept C40567965 @default.
- W2947956474 hasConcept C41008148 @default.
- W2947956474 hasConcept C46286280 @default.
- W2947956474 hasConcept C47432892 @default.
- W2947956474 hasConcept C47446073 @default.
- W2947956474 hasConcept C50644808 @default.
- W2947956474 hasConcept C62520636 @default.
- W2947956474 hasConcept C76563020 @default.
- W2947956474 hasConcept C89227174 @default.
- W2947956474 hasConcept C89451469 @default.
- W2947956474 hasConceptScore W2947956474C102519508 @default.
- W2947956474 hasConceptScore W2947956474C11413529 @default.
- W2947956474 hasConceptScore W2947956474C119599485 @default.
- W2947956474 hasConceptScore W2947956474C121332964 @default.
- W2947956474 hasConceptScore W2947956474C127413603 @default.
- W2947956474 hasConceptScore W2947956474C134306372 @default.
- W2947956474 hasConceptScore W2947956474C134342201 @default.
- W2947956474 hasConceptScore W2947956474C153180895 @default.
- W2947956474 hasConceptScore W2947956474C154945302 @default.
- W2947956474 hasConceptScore W2947956474C163258240 @default.
- W2947956474 hasConceptScore W2947956474C165801399 @default.
- W2947956474 hasConceptScore W2947956474C175202392 @default.
- W2947956474 hasConceptScore W2947956474C196216189 @default.