Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947990864> ?p ?o ?g. }
- W2947990864 endingPage "1254" @default.
- W2947990864 startingPage "1242" @default.
- W2947990864 abstract "Shading artifact may lead to CT number inaccuracy, image contrast loss and spatial non-uniformity (SNU), which is considered as one of the fundamental limitations for volumetric CT (VCT) application. To correct the shading artifact, a novel approach is proposed using deep learning and an adaptive filter (AF).Firstly, we apply the deep convolutional neural network (DCNN) to train a human tissue segmentation model. The trained model is implemented to segment the tissue. According to the general knowledge that CT number of the same human tissue is approximately the same, a template image without shading artifact can be generated using segmentation and then each tissue is filled with the corresponding CT number of a specific tissue. By subtracting the template image from the uncorrected image, the residual image with image detail and shading artifact are generated. The shading artifact is mainly low-frequency signals while the image details are mainly high-frequency signals. Therefore, we proposed an adaptive filter to separate the shading artifact and image details accurately. Finally, the estimated shading artifacts are deleted from the raw image to generate the corrected image.On the Catphan©504 study, the error of CT number in the corrected image's region of interest (ROI) is reduced from 109 to 11 HU, and the image contrast is increased by a factor of 1.46 on average. On the patient pelvis study, the error of CT number in selected ROI is reduced from 198 to 10 HU. The SNU calculated from the ROIs decreases from 24% to 9% after correction.The proposed shading correction method using DCNN and AF may find a useful application in future clinical practice." @default.
- W2947990864 created "2019-06-07" @default.
- W2947990864 creator A5014548288 @default.
- W2947990864 creator A5020219997 @default.
- W2947990864 creator A5031315906 @default.
- W2947990864 creator A5035331955 @default.
- W2947990864 creator A5056242195 @default.
- W2947990864 creator A5071143244 @default.
- W2947990864 creator A5078221287 @default.
- W2947990864 creator A5086187557 @default.
- W2947990864 creator A5091531098 @default.
- W2947990864 date "2019-07-01" @default.
- W2947990864 modified "2023-10-14" @default.
- W2947990864 title "Shading correction for volumetric CT using deep convolutional neural network and adaptive filter" @default.
- W2947990864 cites W1488966874 @default.
- W2947990864 cites W2001104419 @default.
- W2947990864 cites W2014547454 @default.
- W2947990864 cites W2021157360 @default.
- W2947990864 cites W2045808008 @default.
- W2947990864 cites W2050624834 @default.
- W2947990864 cites W2055302232 @default.
- W2947990864 cites W2072021306 @default.
- W2947990864 cites W2073585401 @default.
- W2947990864 cites W2091229147 @default.
- W2947990864 cites W2096248584 @default.
- W2947990864 cites W2148726775 @default.
- W2947990864 cites W2149489589 @default.
- W2947990864 cites W2158776862 @default.
- W2947990864 cites W2175952604 @default.
- W2947990864 cites W2280162087 @default.
- W2947990864 cites W2338271170 @default.
- W2947990864 cites W2470452803 @default.
- W2947990864 cites W2608338109 @default.
- W2947990864 cites W2621660136 @default.
- W2947990864 cites W2767091557 @default.
- W2947990864 cites W2768720080 @default.
- W2947990864 cites W2796256498 @default.
- W2947990864 cites W2802175546 @default.
- W2947990864 cites W2944123384 @default.
- W2947990864 cites W3124749476 @default.
- W2947990864 doi "https://doi.org/10.21037/qims.2019.05.19" @default.
- W2947990864 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6685805" @default.
- W2947990864 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31448210" @default.
- W2947990864 hasPublicationYear "2019" @default.
- W2947990864 type Work @default.
- W2947990864 sameAs 2947990864 @default.
- W2947990864 citedByCount "7" @default.
- W2947990864 countsByYear W29479908642019 @default.
- W2947990864 countsByYear W29479908642020 @default.
- W2947990864 countsByYear W29479908642021 @default.
- W2947990864 countsByYear W29479908642022 @default.
- W2947990864 countsByYear W29479908642023 @default.
- W2947990864 crossrefType "journal-article" @default.
- W2947990864 hasAuthorship W2947990864A5014548288 @default.
- W2947990864 hasAuthorship W2947990864A5020219997 @default.
- W2947990864 hasAuthorship W2947990864A5031315906 @default.
- W2947990864 hasAuthorship W2947990864A5035331955 @default.
- W2947990864 hasAuthorship W2947990864A5056242195 @default.
- W2947990864 hasAuthorship W2947990864A5071143244 @default.
- W2947990864 hasAuthorship W2947990864A5078221287 @default.
- W2947990864 hasAuthorship W2947990864A5086187557 @default.
- W2947990864 hasAuthorship W2947990864A5091531098 @default.
- W2947990864 hasBestOaLocation W29479908641 @default.
- W2947990864 hasConcept C106131492 @default.
- W2947990864 hasConcept C115961682 @default.
- W2947990864 hasConcept C121684516 @default.
- W2947990864 hasConcept C153180895 @default.
- W2947990864 hasConcept C154945302 @default.
- W2947990864 hasConcept C177515723 @default.
- W2947990864 hasConcept C19609008 @default.
- W2947990864 hasConcept C2776502983 @default.
- W2947990864 hasConcept C2779010991 @default.
- W2947990864 hasConcept C31972630 @default.
- W2947990864 hasConcept C41008148 @default.
- W2947990864 hasConcept C81363708 @default.
- W2947990864 hasConcept C89600930 @default.
- W2947990864 hasConceptScore W2947990864C106131492 @default.
- W2947990864 hasConceptScore W2947990864C115961682 @default.
- W2947990864 hasConceptScore W2947990864C121684516 @default.
- W2947990864 hasConceptScore W2947990864C153180895 @default.
- W2947990864 hasConceptScore W2947990864C154945302 @default.
- W2947990864 hasConceptScore W2947990864C177515723 @default.
- W2947990864 hasConceptScore W2947990864C19609008 @default.
- W2947990864 hasConceptScore W2947990864C2776502983 @default.
- W2947990864 hasConceptScore W2947990864C2779010991 @default.
- W2947990864 hasConceptScore W2947990864C31972630 @default.
- W2947990864 hasConceptScore W2947990864C41008148 @default.
- W2947990864 hasConceptScore W2947990864C81363708 @default.
- W2947990864 hasConceptScore W2947990864C89600930 @default.
- W2947990864 hasIssue "7" @default.
- W2947990864 hasLocation W29479908641 @default.
- W2947990864 hasLocation W29479908642 @default.
- W2947990864 hasLocation W29479908643 @default.
- W2947990864 hasLocation W29479908644 @default.
- W2947990864 hasOpenAccess W2947990864 @default.
- W2947990864 hasPrimaryLocation W29479908641 @default.
- W2947990864 hasRelatedWork W2103040079 @default.
- W2947990864 hasRelatedWork W2319567267 @default.