Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948001479> ?p ?o ?g. }
- W2948001479 abstract "Internal erosion is one of the major threats for water retaining structures like embankment dams or levees. Numerous design criteria were developed in the last decades for this reason. As the main concern of the geotechnical engineer is to prevent erosion, it is not astonishing that a vast majority of the criteria are focussed on the onset or initiation of erosion, or more precise, to avoid it. However, many existing structures have already experienced the one or other event of internal erosion. Thus, it is beneficial to understand not only the initiation, but also the progression of the erosion process. This process is though still not completely understood.Among the different types of internal erosion, contact erosion is characterised by two soils (base and filter) of different grain size distributions (PSD) forming an interface to each other. The erosion process is triggered by a water flow, which can be either parallel or perpendicular to the interface. The latter configuration is sometimes referred to as filtration and is in the focus of this research. If erosion occurs, base particles are transported into the pores of the filter by a water flow, forming a mixture zone with a lower porosity and permeability. For a better understanding of the contact erosion process, the formation of this zone must be understood. Two main aspects can be identified: The behaviour of the base material under the hydraulic load and the arrangement of the particles in the mixture zone, which is expressed in the porosity as a macroscopic parameter.Porosity alterations during erosion tests can be determined in different ways. These are among others: Direct observations of changes in layer heights, Computed Tomography (CT) and radiometric methods. Electromagnetic methods take advantage of the different dielectric permittivity of the solid, liquid and gaseous phases of a soil, which interact with an electric pulse travelling along a sensor surrounded by the material under test. An average value can be obtained with Time Domain Reflectometry (TDR). With an inversion algorithm, the spatial distribution of the parameter of interest, e.g. porosity or moisture, can be computed out of the TDR-trace. This method is called Spatial TDR (STDR), which was chosen for this research work. The three step inverse model was established and refined for this setup and its accuracy proven in calibration and verification measurements.In order to study the behaviour of the base material alone under hydraulic load, a test stand called Fluidisation Setup was developed. Different base materials were tested under increasing hydraulic potentials up to the point of hydraulic heave. The inner stress conditions during this tests were checked with vane-shear-tests. A clear correlation of shear resistance and hydraulic load was found. Additionally, the dielectric permittivity of the material was measured up to high porosities obtained during the fluidisation.A Coaxial Erosion Cell (CEC) was developed to act as a sensor by itself for the erosion tests. The coaxial arrangement ensures an even and defined distribution of the electromagnetic field, which is beneficial for the accuracy of the measurements. The material under test is positioned in the annulus between inner and outer conductor. An inspection window allows visual observations and pressure transducers the reading of the distribution of the hydraulic head along the cell. With this cell and the STDR-measurements, the longitudinal distribution of the porosity during the tests can be determined in nearly real time in short intervals. A second cell of a more conventional setup was used for verifying the results of the CEC. Additionally, superimposed loads were applied in this tests in order to study the influence of different effective stresses on onset and progress of contact erosion.It was found that the size ratio of base and filter pores has a considerable influence on the initiation and progress of the erosion process. It not only influences the hydraulic gradient at which the process may initiate, but also the porosity and the distribution of the hydraulic gradient in the formed MZ as well as the elevation of the MZ for a given gradient. It further has an influence on the effect of effective stresses on the onset of erosion." @default.
- W2948001479 created "2019-06-07" @default.
- W2948001479 creator A5030156338 @default.
- W2948001479 date "2019-04-24" @default.
- W2948001479 modified "2023-09-27" @default.
- W2948001479 title "On the transient process of contact erosion (instabilities during granular erosion)" @default.
- W2948001479 cites W1490066004 @default.
- W2948001479 cites W1499731816 @default.
- W2948001479 cites W1652360219 @default.
- W2948001479 cites W1909266731 @default.
- W2948001479 cites W1935451326 @default.
- W2948001479 cites W1974967294 @default.
- W2948001479 cites W1977517264 @default.
- W2948001479 cites W1978871379 @default.
- W2948001479 cites W1979602846 @default.
- W2948001479 cites W1986137890 @default.
- W2948001479 cites W1988682225 @default.
- W2948001479 cites W1994801346 @default.
- W2948001479 cites W1996650025 @default.
- W2948001479 cites W2001908557 @default.
- W2948001479 cites W2004446438 @default.
- W2948001479 cites W2007842017 @default.
- W2948001479 cites W2014166534 @default.
- W2948001479 cites W2023210017 @default.
- W2948001479 cites W2026903954 @default.
- W2948001479 cites W2031772235 @default.
- W2948001479 cites W2038169401 @default.
- W2948001479 cites W2041196830 @default.
- W2948001479 cites W2045251026 @default.
- W2948001479 cites W2066952985 @default.
- W2948001479 cites W2070098972 @default.
- W2948001479 cites W2074633139 @default.
- W2948001479 cites W2081413706 @default.
- W2948001479 cites W2084536588 @default.
- W2948001479 cites W2085412852 @default.
- W2948001479 cites W2085851024 @default.
- W2948001479 cites W2091820822 @default.
- W2948001479 cites W2092391038 @default.
- W2948001479 cites W2118266479 @default.
- W2948001479 cites W2120212574 @default.
- W2948001479 cites W2123504762 @default.
- W2948001479 cites W2140874016 @default.
- W2948001479 cites W2144442651 @default.
- W2948001479 cites W2147953005 @default.
- W2948001479 cites W2265556893 @default.
- W2948001479 cites W2290098320 @default.
- W2948001479 cites W2290669022 @default.
- W2948001479 cites W2589743893 @default.
- W2948001479 cites W2593950662 @default.
- W2948001479 cites W2891224147 @default.
- W2948001479 cites W3181026039 @default.
- W2948001479 cites W569376460 @default.
- W2948001479 cites W827245563 @default.
- W2948001479 cites W93327475 @default.
- W2948001479 doi "https://doi.org/10.14264/uql.2019.301" @default.
- W2948001479 hasPublicationYear "2019" @default.
- W2948001479 type Work @default.
- W2948001479 sameAs 2948001479 @default.
- W2948001479 citedByCount "0" @default.
- W2948001479 crossrefType "dissertation" @default.
- W2948001479 hasAuthorship W2948001479A5030156338 @default.
- W2948001479 hasConcept C111919701 @default.
- W2948001479 hasConcept C114793014 @default.
- W2948001479 hasConcept C115038398 @default.
- W2948001479 hasConcept C120882062 @default.
- W2948001479 hasConcept C121332964 @default.
- W2948001479 hasConcept C123157820 @default.
- W2948001479 hasConcept C127313418 @default.
- W2948001479 hasConcept C187320778 @default.
- W2948001479 hasConcept C2779606758 @default.
- W2948001479 hasConcept C38349280 @default.
- W2948001479 hasConcept C41008148 @default.
- W2948001479 hasConcept C41625074 @default.
- W2948001479 hasConcept C54355233 @default.
- W2948001479 hasConcept C57879066 @default.
- W2948001479 hasConcept C6648577 @default.
- W2948001479 hasConcept C86803240 @default.
- W2948001479 hasConcept C98045186 @default.
- W2948001479 hasConceptScore W2948001479C111919701 @default.
- W2948001479 hasConceptScore W2948001479C114793014 @default.
- W2948001479 hasConceptScore W2948001479C115038398 @default.
- W2948001479 hasConceptScore W2948001479C120882062 @default.
- W2948001479 hasConceptScore W2948001479C121332964 @default.
- W2948001479 hasConceptScore W2948001479C123157820 @default.
- W2948001479 hasConceptScore W2948001479C127313418 @default.
- W2948001479 hasConceptScore W2948001479C187320778 @default.
- W2948001479 hasConceptScore W2948001479C2779606758 @default.
- W2948001479 hasConceptScore W2948001479C38349280 @default.
- W2948001479 hasConceptScore W2948001479C41008148 @default.
- W2948001479 hasConceptScore W2948001479C41625074 @default.
- W2948001479 hasConceptScore W2948001479C54355233 @default.
- W2948001479 hasConceptScore W2948001479C57879066 @default.
- W2948001479 hasConceptScore W2948001479C6648577 @default.
- W2948001479 hasConceptScore W2948001479C86803240 @default.
- W2948001479 hasConceptScore W2948001479C98045186 @default.
- W2948001479 hasLocation W29480014791 @default.
- W2948001479 hasOpenAccess W2948001479 @default.
- W2948001479 hasPrimaryLocation W29480014791 @default.
- W2948001479 hasRelatedWork W1574605774 @default.
- W2948001479 hasRelatedWork W1969557653 @default.