Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948103689> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2948103689 endingPage "238" @default.
- W2948103689 startingPage "217" @default.
- W2948103689 abstract "The problem of image reconstruction is to produce an image of a distribution that is compatible with constraints provided by measurements of its line integrals (i. e., values of its Radon transform) along a finite number of lines of known locations and with other possible constraints, such as nonnegativity. Algebraic reconstruction techniques (ART) form a family of iterative algorithms used for image reconstruction. Their distinguishing features are: (1) they assume that the image is represented as a linear combination of some known basis functions and (2) the unknown coefficients in this linear combination are estimated by an iterative process in which just one of the measured line integrals is used in any one iterative step. The first section of the chapter gives a tutorial overview of variants of ART, concentrating on the mathematical results regarding them and mentioning their computational efficiency in various applications. All variants of ART aim at producing an image that is compatible with the constraints, such constraints-compatibility is mathematically defined by what is referred to as the primary criterion. The second section of the chapter is devoted to the superiorization methodology, which is a recently-developed heuristic approach to optimization, and to a discussion of its applicability to improving the results of iterative approaches to inverting the Radon transform. The underlying idea is that many iterative algorithms for finding such an inverse are perturbation resilient in the sense that, even if certain kinds of changes are made at the end of each iterative step, the algorithm still produces a constraints-compatible solution. This property is exploited by using permitted changes to steer the algorithm to a solution that is not only constraints-compatible, but is also desirable according to a specified secondary criterion. The approach is very general, it is applicable to many iterative procedures and secondary criteria used in the inversion of the Radon transform. Superiorization produces automatically from any given iterative algorithm its superiorized version. If the original iterative algorithm satisfies certain mathematical conditions, then the output of its superiorized version is guaranteed to be as good as the output of the original algorithm from the point of view of the primary criterion, but it is superior to the latter according to the secondary criterion. This intuitive description is made more precise and is illustrated in the second section of the chapter." @default.
- W2948103689 created "2019-06-14" @default.
- W2948103689 creator A5014205193 @default.
- W2948103689 date "2019-06-17" @default.
- W2948103689 modified "2023-09-25" @default.
- W2948103689 title "10. Iterative reconstruction techniques and their superiorization for the inversion of the Radon transform" @default.
- W2948103689 doi "https://doi.org/10.1515/9783110560855-010" @default.
- W2948103689 hasPublicationYear "2019" @default.
- W2948103689 type Work @default.
- W2948103689 sameAs 2948103689 @default.
- W2948103689 citedByCount "3" @default.
- W2948103689 countsByYear W29481036892019 @default.
- W2948103689 countsByYear W29481036892020 @default.
- W2948103689 crossrefType "book-chapter" @default.
- W2948103689 hasAuthorship W2948103689A5014205193 @default.
- W2948103689 hasConcept C109007969 @default.
- W2948103689 hasConcept C11413529 @default.
- W2948103689 hasConcept C115903868 @default.
- W2948103689 hasConcept C126255220 @default.
- W2948103689 hasConcept C134306372 @default.
- W2948103689 hasConcept C135252773 @default.
- W2948103689 hasConcept C141379421 @default.
- W2948103689 hasConcept C143587482 @default.
- W2948103689 hasConcept C151730666 @default.
- W2948103689 hasConcept C154945302 @default.
- W2948103689 hasConcept C159694833 @default.
- W2948103689 hasConcept C1893757 @default.
- W2948103689 hasConcept C197231052 @default.
- W2948103689 hasConcept C33923547 @default.
- W2948103689 hasConcept C41008148 @default.
- W2948103689 hasConcept C86803240 @default.
- W2948103689 hasConceptScore W2948103689C109007969 @default.
- W2948103689 hasConceptScore W2948103689C11413529 @default.
- W2948103689 hasConceptScore W2948103689C115903868 @default.
- W2948103689 hasConceptScore W2948103689C126255220 @default.
- W2948103689 hasConceptScore W2948103689C134306372 @default.
- W2948103689 hasConceptScore W2948103689C135252773 @default.
- W2948103689 hasConceptScore W2948103689C141379421 @default.
- W2948103689 hasConceptScore W2948103689C143587482 @default.
- W2948103689 hasConceptScore W2948103689C151730666 @default.
- W2948103689 hasConceptScore W2948103689C154945302 @default.
- W2948103689 hasConceptScore W2948103689C159694833 @default.
- W2948103689 hasConceptScore W2948103689C1893757 @default.
- W2948103689 hasConceptScore W2948103689C197231052 @default.
- W2948103689 hasConceptScore W2948103689C33923547 @default.
- W2948103689 hasConceptScore W2948103689C41008148 @default.
- W2948103689 hasConceptScore W2948103689C86803240 @default.
- W2948103689 hasLocation W29481036891 @default.
- W2948103689 hasOpenAccess W2948103689 @default.
- W2948103689 hasPrimaryLocation W29481036891 @default.
- W2948103689 hasRelatedWork W1983488309 @default.
- W2948103689 hasRelatedWork W2021846689 @default.
- W2948103689 hasRelatedWork W2121460486 @default.
- W2948103689 hasRelatedWork W2148504016 @default.
- W2948103689 hasRelatedWork W2388935310 @default.
- W2948103689 hasRelatedWork W2496392105 @default.
- W2948103689 hasRelatedWork W2532315310 @default.
- W2948103689 hasRelatedWork W2753113106 @default.
- W2948103689 hasRelatedWork W3205591509 @default.
- W2948103689 hasRelatedWork W2518446574 @default.
- W2948103689 isParatext "false" @default.
- W2948103689 isRetracted "false" @default.
- W2948103689 magId "2948103689" @default.
- W2948103689 workType "book-chapter" @default.