Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948153973> ?p ?o ?g. }
- W2948153973 endingPage "547" @default.
- W2948153973 startingPage "537" @default.
- W2948153973 abstract "A crucial component of an autonomous vehicle (AV) is the artificial intelligence (AI) is able to drive towards a desired destination. Today, there are different paradigms addressing the development of AI drivers. On the one hand, we find modular pipelines, which divide the driving task into sub-tasks such as perception and maneuver planning and control. On the other hand, we find end-to-end driving approaches that try to learn a direct mapping from input raw sensor data to vehicle control signals. The later are relatively less studied, but are gaining popularity since they are less demanding in terms of sensor data annotation. This paper focuses on end-to-end autonomous driving. So far, most proposals relying on this paradigm assume RGB images as input sensor data. However, AVs will not be equipped only with cameras, but also with active sensors providing accurate depth information ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>e.g.</i> , LiDARs). Accordingly, this paper analyses whether combining RGB and depth modalities, <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i.e.</i> using RGBD data, produces better end-to-end AI drivers than relying on a single modality. We consider multimodality based on early, mid and late fusion schemes, both in multisensory and single-sensor (monocular depth estimation) settings. Using the CARLA simulator and conditional imitation learning (CIL), we show how, indeed, early fusion multimodality outperforms single-modality." @default.
- W2948153973 created "2019-06-14" @default.
- W2948153973 creator A5021221556 @default.
- W2948153973 creator A5023877878 @default.
- W2948153973 creator A5080415474 @default.
- W2948153973 creator A5083486951 @default.
- W2948153973 creator A5087248790 @default.
- W2948153973 date "2022-01-01" @default.
- W2948153973 modified "2023-10-18" @default.
- W2948153973 title "Multimodal End-to-End Autonomous Driving" @default.
- W2948153973 cites W1531192956 @default.
- W2948153973 cites W1745334888 @default.
- W2948153973 cites W1903029394 @default.
- W2948153973 cites W1966456026 @default.
- W2948153973 cites W1986014385 @default.
- W2948153973 cites W2119112357 @default.
- W2948153973 cites W2145142957 @default.
- W2948153973 cites W2150066425 @default.
- W2948153973 cites W2225887246 @default.
- W2948153973 cites W2340897893 @default.
- W2948153973 cites W2341555367 @default.
- W2948153973 cites W2343568200 @default.
- W2948153973 cites W2415234561 @default.
- W2948153973 cites W2479866714 @default.
- W2948153973 cites W2481401919 @default.
- W2948153973 cites W2520707372 @default.
- W2948153973 cites W2525936901 @default.
- W2948153973 cites W2555618208 @default.
- W2948153973 cites W2558027072 @default.
- W2948153973 cites W2559767995 @default.
- W2948153973 cites W2586442778 @default.
- W2948153973 cites W2603203130 @default.
- W2948153973 cites W2606794968 @default.
- W2948153973 cites W2615011300 @default.
- W2948153973 cites W2740067745 @default.
- W2948153973 cites W2750632489 @default.
- W2948153973 cites W2760327656 @default.
- W2948153973 cites W2765608241 @default.
- W2948153973 cites W2774839435 @default.
- W2948153973 cites W2783963507 @default.
- W2948153973 cites W2790640584 @default.
- W2948153973 cites W2798965597 @default.
- W2948153973 cites W2812952439 @default.
- W2948153973 cites W2876324142 @default.
- W2948153973 cites W2890235476 @default.
- W2948153973 cites W2891031479 @default.
- W2948153973 cites W2895314356 @default.
- W2948153973 cites W2896994311 @default.
- W2948153973 cites W2897543288 @default.
- W2948153973 cites W2910442875 @default.
- W2948153973 cites W2911486422 @default.
- W2948153973 cites W2913160965 @default.
- W2948153973 cites W2962762260 @default.
- W2948153973 cites W2962824366 @default.
- W2948153973 cites W2962843773 @default.
- W2948153973 cites W2962894046 @default.
- W2948153973 cites W2963016445 @default.
- W2948153973 cites W2963074722 @default.
- W2948153973 cites W2963400571 @default.
- W2948153973 cites W2963488291 @default.
- W2948153973 cites W2963579094 @default.
- W2948153973 cites W2963677766 @default.
- W2948153973 cites W2963686760 @default.
- W2948153973 cites W2964014680 @default.
- W2948153973 cites W2964020152 @default.
- W2948153973 cites W2964062501 @default.
- W2948153973 cites W2964318152 @default.
- W2948153973 doi "https://doi.org/10.1109/tits.2020.3013234" @default.
- W2948153973 hasPublicationYear "2022" @default.
- W2948153973 type Work @default.
- W2948153973 sameAs 2948153973 @default.
- W2948153973 citedByCount "70" @default.
- W2948153973 countsByYear W29481539732020 @default.
- W2948153973 countsByYear W29481539732021 @default.
- W2948153973 countsByYear W29481539732022 @default.
- W2948153973 countsByYear W29481539732023 @default.
- W2948153973 crossrefType "journal-article" @default.
- W2948153973 hasAuthorship W2948153973A5021221556 @default.
- W2948153973 hasAuthorship W2948153973A5023877878 @default.
- W2948153973 hasAuthorship W2948153973A5080415474 @default.
- W2948153973 hasAuthorship W2948153973A5083486951 @default.
- W2948153973 hasAuthorship W2948153973A5087248790 @default.
- W2948153973 hasBestOaLocation W29481539732 @default.
- W2948153973 hasConcept C101468663 @default.
- W2948153973 hasConcept C107457646 @default.
- W2948153973 hasConcept C111919701 @default.
- W2948153973 hasConcept C121332964 @default.
- W2948153973 hasConcept C154945302 @default.
- W2948153973 hasConcept C168167062 @default.
- W2948153973 hasConcept C199360897 @default.
- W2948153973 hasConcept C2780226545 @default.
- W2948153973 hasConcept C31972630 @default.
- W2948153973 hasConcept C33954974 @default.
- W2948153973 hasConcept C34413123 @default.
- W2948153973 hasConcept C41008148 @default.
- W2948153973 hasConcept C43521106 @default.
- W2948153973 hasConcept C74296488 @default.
- W2948153973 hasConcept C82990744 @default.