Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948156936> ?p ?o ?g. }
- W2948156936 endingPage "78532" @default.
- W2948156936 startingPage "78515" @default.
- W2948156936 abstract "Driving behavior has a large impact on vehicle fuel consumption. Dedicated study on the relationship between the driving behavior and fuel consumption can contribute to decreasing the energy cost of transportation and the development of the behavior assessment technology for the ADAS system. Therefore, it is vital to evaluate this relationship in order to develop more ecological driving assistance systems and improve the vehicle fuel economy. However, modeling driving behavior under the dynamic driving conditions is complex, making a quantitative analysis of the relationship between the driving behavior and the fuel consumption difficult. In this paper, we introduce two kinds of machine learning methods for evaluating the fuel efficiency of driving behavior using the naturalistic driving data. In the first stage, we use an unsupervised spectral clustering algorithm to study the macroscopic relationship between driving behavior and fuel consumption, using the data collected during the natural driving process. In the second stage, the dynamic information from the driving environment and natural driving data is integrated to generate a model of the relationship between various driving behaviors and the corresponding fuel consumption features. The dynamic environment factors are coded into a processable, digital form using a deep learning-based object detection method so that the environmental data can be linked with the vehicle's operating signal data to provide the training data for the deep learning network. The training data are labeled according to its fuel consumption feature distribution, which is obtained from the road segment data and historical driving data. This deep learning-based model can then be used as a predictor of the fuel consumption associated with different driving behaviors. Our results show that the proposed method can effectively identify the relationship between the driving behavior and the fuel consumption on both macro and micro levels, allowing for end-to-end fuel consumption feature prediction, which can then be applied in the advanced driving assistance systems." @default.
- W2948156936 created "2019-06-14" @default.
- W2948156936 creator A5013453783 @default.
- W2948156936 creator A5017044617 @default.
- W2948156936 creator A5039337009 @default.
- W2948156936 creator A5042118446 @default.
- W2948156936 creator A5074898161 @default.
- W2948156936 date "2019-01-01" @default.
- W2948156936 modified "2023-10-01" @default.
- W2948156936 title "Impact of Driver Behavior on Fuel Consumption: Classification, Evaluation and Prediction Using Machine Learning" @default.
- W2948156936 cites W1498436455 @default.
- W2948156936 cites W1528228139 @default.
- W2948156936 cites W1565069923 @default.
- W2948156936 cites W1843686528 @default.
- W2948156936 cites W1956718793 @default.
- W2948156936 cites W1984985005 @default.
- W2948156936 cites W1985217790 @default.
- W2948156936 cites W1991154267 @default.
- W2948156936 cites W2007227052 @default.
- W2948156936 cites W2007700466 @default.
- W2948156936 cites W2008640105 @default.
- W2948156936 cites W2013375980 @default.
- W2948156936 cites W2016115589 @default.
- W2948156936 cites W2044080979 @default.
- W2948156936 cites W2047030012 @default.
- W2948156936 cites W2057463094 @default.
- W2948156936 cites W2058169517 @default.
- W2948156936 cites W2060774914 @default.
- W2948156936 cites W2064675550 @default.
- W2948156936 cites W2067457993 @default.
- W2948156936 cites W2069171819 @default.
- W2948156936 cites W2096076494 @default.
- W2948156936 cites W2098180043 @default.
- W2948156936 cites W2116058151 @default.
- W2948156936 cites W2117686912 @default.
- W2948156936 cites W2121947440 @default.
- W2948156936 cites W2125531986 @default.
- W2948156936 cites W2132914434 @default.
- W2948156936 cites W2140405352 @default.
- W2948156936 cites W2149141985 @default.
- W2948156936 cites W2157331557 @default.
- W2948156936 cites W2179541307 @default.
- W2948156936 cites W2283882366 @default.
- W2948156936 cites W2461586262 @default.
- W2948156936 cites W2519106163 @default.
- W2948156936 cites W2559425100 @default.
- W2948156936 cites W2585720638 @default.
- W2948156936 cites W2755310306 @default.
- W2948156936 cites W2765237207 @default.
- W2948156936 cites W2765958808 @default.
- W2948156936 cites W2790882261 @default.
- W2948156936 cites W2808463094 @default.
- W2948156936 cites W2809822040 @default.
- W2948156936 cites W2811398205 @default.
- W2948156936 cites W2849636373 @default.
- W2948156936 cites W2899669290 @default.
- W2948156936 cites W2903184205 @default.
- W2948156936 cites W4239510810 @default.
- W2948156936 doi "https://doi.org/10.1109/access.2019.2920489" @default.
- W2948156936 hasPublicationYear "2019" @default.
- W2948156936 type Work @default.
- W2948156936 sameAs 2948156936 @default.
- W2948156936 citedByCount "60" @default.
- W2948156936 countsByYear W29481569362019 @default.
- W2948156936 countsByYear W29481569362020 @default.
- W2948156936 countsByYear W29481569362021 @default.
- W2948156936 countsByYear W29481569362022 @default.
- W2948156936 countsByYear W29481569362023 @default.
- W2948156936 crossrefType "journal-article" @default.
- W2948156936 hasAuthorship W2948156936A5013453783 @default.
- W2948156936 hasAuthorship W2948156936A5017044617 @default.
- W2948156936 hasAuthorship W2948156936A5039337009 @default.
- W2948156936 hasAuthorship W2948156936A5042118446 @default.
- W2948156936 hasAuthorship W2948156936A5074898161 @default.
- W2948156936 hasBestOaLocation W29481569361 @default.
- W2948156936 hasConcept C108583219 @default.
- W2948156936 hasConcept C111919701 @default.
- W2948156936 hasConcept C119857082 @default.
- W2948156936 hasConcept C127413603 @default.
- W2948156936 hasConcept C154945302 @default.
- W2948156936 hasConcept C171146098 @default.
- W2948156936 hasConcept C22212356 @default.
- W2948156936 hasConcept C41008148 @default.
- W2948156936 hasConcept C45882903 @default.
- W2948156936 hasConcept C47796450 @default.
- W2948156936 hasConcept C67186912 @default.
- W2948156936 hasConcept C73555534 @default.
- W2948156936 hasConcept C77088390 @default.
- W2948156936 hasConcept C79487989 @default.
- W2948156936 hasConcept C87833898 @default.
- W2948156936 hasConcept C98045186 @default.
- W2948156936 hasConceptScore W2948156936C108583219 @default.
- W2948156936 hasConceptScore W2948156936C111919701 @default.
- W2948156936 hasConceptScore W2948156936C119857082 @default.
- W2948156936 hasConceptScore W2948156936C127413603 @default.
- W2948156936 hasConceptScore W2948156936C154945302 @default.
- W2948156936 hasConceptScore W2948156936C171146098 @default.
- W2948156936 hasConceptScore W2948156936C22212356 @default.