Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948157022> ?p ?o ?g. }
- W2948157022 endingPage "1307" @default.
- W2948157022 startingPage "1307" @default.
- W2948157022 abstract "Recently, Hyperspectral Image (HSI) classification has gradually been getting attention from more and more researchers. HSI has abundant spectral and spatial information; thus, how to fuse these two types of information is still a problem worth studying. In this paper, to extract spectral and spatial feature, we propose a Double-Branch Multi-Attention mechanism network (DBMA) for HSI classification. This network has two branches to extract spectral and spatial feature respectively which can reduce the interference between the two types of feature. Furthermore, with respect to the different characteristics of these two branches, two types of attention mechanism are applied in the two branches respectively, which ensures to extract more discriminative spectral and spatial feature. The extracted features are then fused for classification. A lot of experiment results on three hyperspectral datasets shows that the proposed method performs better than the state-of-the-art method." @default.
- W2948157022 created "2019-06-14" @default.
- W2948157022 creator A5002378639 @default.
- W2948157022 creator A5009576623 @default.
- W2948157022 creator A5049776440 @default.
- W2948157022 creator A5065027008 @default.
- W2948157022 creator A5066877556 @default.
- W2948157022 date "2019-06-01" @default.
- W2948157022 modified "2023-10-17" @default.
- W2948157022 title "Double-Branch Multi-Attention Mechanism Network for Hyperspectral Image Classification" @default.
- W2948157022 cites W1521436688 @default.
- W2948157022 cites W1976027628 @default.
- W2948157022 cites W1990895816 @default.
- W2948157022 cites W1997866865 @default.
- W2948157022 cites W2029316659 @default.
- W2948157022 cites W2043665634 @default.
- W2948157022 cites W2047243114 @default.
- W2948157022 cites W2066485336 @default.
- W2948157022 cites W2081809992 @default.
- W2948157022 cites W2090424610 @default.
- W2948157022 cites W2108597246 @default.
- W2948157022 cites W2136251662 @default.
- W2948157022 cites W2151665594 @default.
- W2948157022 cites W2163346236 @default.
- W2948157022 cites W2257669061 @default.
- W2948157022 cites W2345128667 @default.
- W2948157022 cites W2500751094 @default.
- W2948157022 cites W2607476064 @default.
- W2948157022 cites W2737996023 @default.
- W2948157022 cites W2754356769 @default.
- W2948157022 cites W2764276316 @default.
- W2948157022 cites W2777237375 @default.
- W2948157022 cites W2808979303 @default.
- W2948157022 cites W2809113079 @default.
- W2948157022 cites W2822065499 @default.
- W2948157022 cites W2888119354 @default.
- W2948157022 cites W2890022946 @default.
- W2948157022 cites W2890366953 @default.
- W2948157022 cites W2900116731 @default.
- W2948157022 cites W2908955282 @default.
- W2948157022 cites W2910650608 @default.
- W2948157022 cites W2915880697 @default.
- W2948157022 cites W2917189553 @default.
- W2948157022 cites W2921430410 @default.
- W2948157022 cites W2928260953 @default.
- W2948157022 cites W2929792287 @default.
- W2948157022 cites W3100499011 @default.
- W2948157022 doi "https://doi.org/10.3390/rs11111307" @default.
- W2948157022 hasPublicationYear "2019" @default.
- W2948157022 type Work @default.
- W2948157022 sameAs 2948157022 @default.
- W2948157022 citedByCount "168" @default.
- W2948157022 countsByYear W29481570222019 @default.
- W2948157022 countsByYear W29481570222020 @default.
- W2948157022 countsByYear W29481570222021 @default.
- W2948157022 countsByYear W29481570222022 @default.
- W2948157022 countsByYear W29481570222023 @default.
- W2948157022 crossrefType "journal-article" @default.
- W2948157022 hasAuthorship W2948157022A5002378639 @default.
- W2948157022 hasAuthorship W2948157022A5009576623 @default.
- W2948157022 hasAuthorship W2948157022A5049776440 @default.
- W2948157022 hasAuthorship W2948157022A5065027008 @default.
- W2948157022 hasAuthorship W2948157022A5066877556 @default.
- W2948157022 hasBestOaLocation W29481570221 @default.
- W2948157022 hasConcept C115961682 @default.
- W2948157022 hasConcept C119599485 @default.
- W2948157022 hasConcept C127413603 @default.
- W2948157022 hasConcept C138885662 @default.
- W2948157022 hasConcept C141353440 @default.
- W2948157022 hasConcept C153180895 @default.
- W2948157022 hasConcept C154945302 @default.
- W2948157022 hasConcept C159078339 @default.
- W2948157022 hasConcept C2776401178 @default.
- W2948157022 hasConcept C41008148 @default.
- W2948157022 hasConcept C41895202 @default.
- W2948157022 hasConcept C97931131 @default.
- W2948157022 hasConceptScore W2948157022C115961682 @default.
- W2948157022 hasConceptScore W2948157022C119599485 @default.
- W2948157022 hasConceptScore W2948157022C127413603 @default.
- W2948157022 hasConceptScore W2948157022C138885662 @default.
- W2948157022 hasConceptScore W2948157022C141353440 @default.
- W2948157022 hasConceptScore W2948157022C153180895 @default.
- W2948157022 hasConceptScore W2948157022C154945302 @default.
- W2948157022 hasConceptScore W2948157022C159078339 @default.
- W2948157022 hasConceptScore W2948157022C2776401178 @default.
- W2948157022 hasConceptScore W2948157022C41008148 @default.
- W2948157022 hasConceptScore W2948157022C41895202 @default.
- W2948157022 hasConceptScore W2948157022C97931131 @default.
- W2948157022 hasIssue "11" @default.
- W2948157022 hasLocation W29481570221 @default.
- W2948157022 hasLocation W29481570222 @default.
- W2948157022 hasOpenAccess W2948157022 @default.
- W2948157022 hasPrimaryLocation W29481570221 @default.
- W2948157022 hasRelatedWork W2024160000 @default.
- W2948157022 hasRelatedWork W2061273563 @default.
- W2948157022 hasRelatedWork W2285052147 @default.
- W2948157022 hasRelatedWork W2729514902 @default.
- W2948157022 hasRelatedWork W2773500201 @default.