Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948179623> ?p ?o ?g. }
- W2948179623 abstract "In this paper, we describe the formalization of the axiom of choice and several of its famous equivalent theorems in Morse-Kelley set theory. These theorems include Tukey's lemma, the Hausdorff maximal principle, the maximal principle, Zermelo's postulate, Zorn's lemma and the well-ordering theorem. We prove the above theorems by the axiom of choice in turn, and finally prove the axiom of choice by Zermelo's postulate and the well-ordering theorem, thus completing the cyclic proof of equivalence between them. The proofs are checked formally using the Coq proof assistant in which Morse-Kelley set theory is formalized. The whole process of formal proof demonstrates that the Coq-based machine proving of mathematics theorem is highly reliable and rigorous. The formal work of this paper is enough for most applications, especially in set theory, topology and algebra." @default.
- W2948179623 created "2019-06-14" @default.
- W2948179623 creator A5075794643 @default.
- W2948179623 creator A5086819750 @default.
- W2948179623 date "2019-06-10" @default.
- W2948179623 modified "2023-09-27" @default.
- W2948179623 title "Formalization of the Axiom of Choice and its Equivalent Theorems" @default.
- W2948179623 cites W121484200 @default.
- W2948179623 cites W1494553505 @default.
- W2948179623 cites W1508641834 @default.
- W2948179623 cites W1541012876 @default.
- W2948179623 cites W1545662229 @default.
- W2948179623 cites W1556162816 @default.
- W2948179623 cites W1576475217 @default.
- W2948179623 cites W1607953571 @default.
- W2948179623 cites W1647170492 @default.
- W2948179623 cites W1768814311 @default.
- W2948179623 cites W1970352212 @default.
- W2948179623 cites W1993950655 @default.
- W2948179623 cites W2017971007 @default.
- W2948179623 cites W2055514745 @default.
- W2948179623 cites W2106192381 @default.
- W2948179623 cites W2263142775 @default.
- W2948179623 cites W2748981990 @default.
- W2948179623 cites W2755403568 @default.
- W2948179623 cites W2772394006 @default.
- W2948179623 cites W2781245398 @default.
- W2948179623 cites W2984504061 @default.
- W2948179623 hasPublicationYear "2019" @default.
- W2948179623 type Work @default.
- W2948179623 sameAs 2948179623 @default.
- W2948179623 citedByCount "1" @default.
- W2948179623 countsByYear W29481796232020 @default.
- W2948179623 crossrefType "posted-content" @default.
- W2948179623 hasAuthorship W2948179623A5075794643 @default.
- W2948179623 hasAuthorship W2948179623A5086819750 @default.
- W2948179623 hasConcept C108710211 @default.
- W2948179623 hasConcept C118615104 @default.
- W2948179623 hasConcept C127753061 @default.
- W2948179623 hasConcept C136119220 @default.
- W2948179623 hasConcept C151797676 @default.
- W2948179623 hasConcept C153046414 @default.
- W2948179623 hasConcept C167729594 @default.
- W2948179623 hasConcept C171636804 @default.
- W2948179623 hasConcept C177264268 @default.
- W2948179623 hasConcept C18903297 @default.
- W2948179623 hasConcept C194886279 @default.
- W2948179623 hasConcept C199343813 @default.
- W2948179623 hasConcept C199360897 @default.
- W2948179623 hasConcept C202444582 @default.
- W2948179623 hasConcept C2524010 @default.
- W2948179623 hasConcept C2777686260 @default.
- W2948179623 hasConcept C2777759810 @default.
- W2948179623 hasConcept C2780069185 @default.
- W2948179623 hasConcept C33923547 @default.
- W2948179623 hasConcept C41008148 @default.
- W2948179623 hasConcept C45962547 @default.
- W2948179623 hasConcept C46757340 @default.
- W2948179623 hasConcept C51460 @default.
- W2948179623 hasConcept C556429856 @default.
- W2948179623 hasConcept C71924100 @default.
- W2948179623 hasConcept C78550038 @default.
- W2948179623 hasConcept C86803240 @default.
- W2948179623 hasConceptScore W2948179623C108710211 @default.
- W2948179623 hasConceptScore W2948179623C118615104 @default.
- W2948179623 hasConceptScore W2948179623C127753061 @default.
- W2948179623 hasConceptScore W2948179623C136119220 @default.
- W2948179623 hasConceptScore W2948179623C151797676 @default.
- W2948179623 hasConceptScore W2948179623C153046414 @default.
- W2948179623 hasConceptScore W2948179623C167729594 @default.
- W2948179623 hasConceptScore W2948179623C171636804 @default.
- W2948179623 hasConceptScore W2948179623C177264268 @default.
- W2948179623 hasConceptScore W2948179623C18903297 @default.
- W2948179623 hasConceptScore W2948179623C194886279 @default.
- W2948179623 hasConceptScore W2948179623C199343813 @default.
- W2948179623 hasConceptScore W2948179623C199360897 @default.
- W2948179623 hasConceptScore W2948179623C202444582 @default.
- W2948179623 hasConceptScore W2948179623C2524010 @default.
- W2948179623 hasConceptScore W2948179623C2777686260 @default.
- W2948179623 hasConceptScore W2948179623C2777759810 @default.
- W2948179623 hasConceptScore W2948179623C2780069185 @default.
- W2948179623 hasConceptScore W2948179623C33923547 @default.
- W2948179623 hasConceptScore W2948179623C41008148 @default.
- W2948179623 hasConceptScore W2948179623C45962547 @default.
- W2948179623 hasConceptScore W2948179623C46757340 @default.
- W2948179623 hasConceptScore W2948179623C51460 @default.
- W2948179623 hasConceptScore W2948179623C556429856 @default.
- W2948179623 hasConceptScore W2948179623C71924100 @default.
- W2948179623 hasConceptScore W2948179623C78550038 @default.
- W2948179623 hasConceptScore W2948179623C86803240 @default.
- W2948179623 hasLocation W29481796231 @default.
- W2948179623 hasOpenAccess W2948179623 @default.
- W2948179623 hasPrimaryLocation W29481796231 @default.
- W2948179623 hasRelatedWork W1503170941 @default.
- W2948179623 hasRelatedWork W1546824363 @default.
- W2948179623 hasRelatedWork W1608708592 @default.
- W2948179623 hasRelatedWork W1636105897 @default.
- W2948179623 hasRelatedWork W18461166 @default.
- W2948179623 hasRelatedWork W1984801909 @default.
- W2948179623 hasRelatedWork W2100065142 @default.