Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948186746> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2948186746 abstract "This project is a literature survey of various theorems and their applications in Choquet theory. For a compact convex subset D of a locally convex topological vector space E, each point x P D is a barycentre of a maximal probability measure on D. This is, in fact, a generalized version of Minkowski's Theorem for finite dimensional spaces. This measure exists uniquely if the compact convex set is a simplex. If the compact convex set is metrizable then the above measure is supported by the ext(D) but very few information is available if the set is non-metrizable. Measures supported by the extreme points are the maximal measures. For a non-metrizable compact convex set the set of all extreme points may not be of Borel category, hence for such cases, the support of maximal measure can have a non-empty intersection with a Borel set disjoint from the extreme boundary. The Choquet-Bishop-De Leeuw Theorem, hence, states that - For an arbitrary locally convex topological vector space, each point of a compact convex subset is represented by a maximal probability measure which gives zero value to all Baire sets disjoint from the extreme points. Further, we study the analysis of function spaces, namely, CpKq in the context of Choquet boundary. If M is a uniform algebra of continuous functions over a compact Hausdorff space K then the state space of M is defined; it is a w*-compact convex subset of M*. The extreme points of the state space are precisely the point evaluation functionals. This motivates to define the Choquet boundary of M, as a subset of K. Choquet boundary is a boundary and its closure is the smallest closed boundary for M, called the Silov boundary. Here we also study the notion of peak point and the result that when K is metrizable then the set of all peak points is dense in the Choquet Boundary. As an application of this notion, we discuss the well- known result by Saskin, which states that for a Korovkin subspace of C(K) the Choquet boundary is the whole K and also vice versa." @default.
- W2948186746 created "2019-06-14" @default.
- W2948186746 creator A5046165627 @default.
- W2948186746 creator A5072844924 @default.
- W2948186746 date "2019-01-01" @default.
- W2948186746 modified "2023-09-26" @default.
- W2948186746 title "A study on Choquet's Theorems and their applications" @default.
- W2948186746 hasPublicationYear "2019" @default.
- W2948186746 type Work @default.
- W2948186746 sameAs 2948186746 @default.
- W2948186746 citedByCount "0" @default.
- W2948186746 crossrefType "dissertation" @default.
- W2948186746 hasAuthorship W2948186746A5046165627 @default.
- W2948186746 hasAuthorship W2948186746A5072844924 @default.
- W2948186746 hasConcept C105433845 @default.
- W2948186746 hasConcept C112680207 @default.
- W2948186746 hasConcept C114614502 @default.
- W2948186746 hasConcept C118615104 @default.
- W2948186746 hasConcept C12108790 @default.
- W2948186746 hasConcept C134306372 @default.
- W2948186746 hasConcept C146147875 @default.
- W2948186746 hasConcept C157972887 @default.
- W2948186746 hasConcept C173688413 @default.
- W2948186746 hasConcept C176684429 @default.
- W2948186746 hasConcept C200661725 @default.
- W2948186746 hasConcept C21031990 @default.
- W2948186746 hasConcept C2524010 @default.
- W2948186746 hasConcept C31498916 @default.
- W2948186746 hasConcept C33923547 @default.
- W2948186746 hasConcept C39847760 @default.
- W2948186746 hasConcept C45340560 @default.
- W2948186746 hasConcept C45962547 @default.
- W2948186746 hasConcept C48540410 @default.
- W2948186746 hasConcept C49870271 @default.
- W2948186746 hasConcept C58228006 @default.
- W2948186746 hasConcept C6018138 @default.
- W2948186746 hasConcept C70710897 @default.
- W2948186746 hasConcept C81332173 @default.
- W2948186746 hasConceptScore W2948186746C105433845 @default.
- W2948186746 hasConceptScore W2948186746C112680207 @default.
- W2948186746 hasConceptScore W2948186746C114614502 @default.
- W2948186746 hasConceptScore W2948186746C118615104 @default.
- W2948186746 hasConceptScore W2948186746C12108790 @default.
- W2948186746 hasConceptScore W2948186746C134306372 @default.
- W2948186746 hasConceptScore W2948186746C146147875 @default.
- W2948186746 hasConceptScore W2948186746C157972887 @default.
- W2948186746 hasConceptScore W2948186746C173688413 @default.
- W2948186746 hasConceptScore W2948186746C176684429 @default.
- W2948186746 hasConceptScore W2948186746C200661725 @default.
- W2948186746 hasConceptScore W2948186746C21031990 @default.
- W2948186746 hasConceptScore W2948186746C2524010 @default.
- W2948186746 hasConceptScore W2948186746C31498916 @default.
- W2948186746 hasConceptScore W2948186746C33923547 @default.
- W2948186746 hasConceptScore W2948186746C39847760 @default.
- W2948186746 hasConceptScore W2948186746C45340560 @default.
- W2948186746 hasConceptScore W2948186746C45962547 @default.
- W2948186746 hasConceptScore W2948186746C48540410 @default.
- W2948186746 hasConceptScore W2948186746C49870271 @default.
- W2948186746 hasConceptScore W2948186746C58228006 @default.
- W2948186746 hasConceptScore W2948186746C6018138 @default.
- W2948186746 hasConceptScore W2948186746C70710897 @default.
- W2948186746 hasConceptScore W2948186746C81332173 @default.
- W2948186746 hasLocation W29481867461 @default.
- W2948186746 hasOpenAccess W2948186746 @default.
- W2948186746 hasPrimaryLocation W29481867461 @default.
- W2948186746 hasRelatedWork W1497237148 @default.
- W2948186746 hasRelatedWork W1976571312 @default.
- W2948186746 hasRelatedWork W1983455865 @default.
- W2948186746 hasRelatedWork W1992480909 @default.
- W2948186746 hasRelatedWork W1993745156 @default.
- W2948186746 hasRelatedWork W2035894209 @default.
- W2948186746 hasRelatedWork W2069616508 @default.
- W2948186746 hasRelatedWork W2085951345 @default.
- W2948186746 hasRelatedWork W2091538619 @default.
- W2948186746 hasRelatedWork W2093781322 @default.
- W2948186746 hasRelatedWork W2116179400 @default.
- W2948186746 hasRelatedWork W2166595622 @default.
- W2948186746 hasRelatedWork W2169253205 @default.
- W2948186746 hasRelatedWork W2283331858 @default.
- W2948186746 hasRelatedWork W2297750455 @default.
- W2948186746 hasRelatedWork W2419143581 @default.
- W2948186746 hasRelatedWork W2505415228 @default.
- W2948186746 hasRelatedWork W2810687674 @default.
- W2948186746 hasRelatedWork W3127466911 @default.
- W2948186746 hasRelatedWork W3195283049 @default.
- W2948186746 isParatext "false" @default.
- W2948186746 isRetracted "false" @default.
- W2948186746 magId "2948186746" @default.
- W2948186746 workType "dissertation" @default.