Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948196832> ?p ?o ?g. }
- W2948196832 endingPage "513" @default.
- W2948196832 startingPage "506" @default.
- W2948196832 abstract "OBJECTIVE. The objective of this article is to show how artificial intelligence (AI) has impacted different components of the imaging value chain thus far as well as to describe its potential future uses. CONCLUSION. The use of AI has the potential to greatly enhance every component of the imaging value chain. From assessing the appropriateness of imaging orders to helping predict patients at risk for fracture, AI can increase the value that musculoskeletal imagers provide to their patients and to referring clinicians by improving image quality, patient centricity, imaging efficiency, and diagnostic accuracy." @default.
- W2948196832 created "2019-06-14" @default.
- W2948196832 creator A5002093701 @default.
- W2948196832 creator A5029839088 @default.
- W2948196832 creator A5053278565 @default.
- W2948196832 creator A5072436140 @default.
- W2948196832 creator A5076466742 @default.
- W2948196832 creator A5085599977 @default.
- W2948196832 date "2019-09-01" @default.
- W2948196832 modified "2023-09-29" @default.
- W2948196832 title "Artificial Intelligence in Musculoskeletal Imaging: Current Status and Future Directions" @default.
- W2948196832 cites W1498436455 @default.
- W2948196832 cites W1604552233 @default.
- W2948196832 cites W2040870580 @default.
- W2948196832 cites W2050490309 @default.
- W2948196832 cites W2059664105 @default.
- W2948196832 cites W2088303672 @default.
- W2948196832 cites W2101675075 @default.
- W2948196832 cites W2103961356 @default.
- W2948196832 cites W2111388536 @default.
- W2948196832 cites W2113030459 @default.
- W2948196832 cites W2137841751 @default.
- W2948196832 cites W2151354228 @default.
- W2948196832 cites W2158581396 @default.
- W2948196832 cites W2165839911 @default.
- W2948196832 cites W2168668658 @default.
- W2948196832 cites W2174661749 @default.
- W2948196832 cites W2213780140 @default.
- W2948196832 cites W2257979135 @default.
- W2948196832 cites W2292819679 @default.
- W2948196832 cites W2339037837 @default.
- W2948196832 cites W2344328023 @default.
- W2948196832 cites W2401383470 @default.
- W2948196832 cites W2412782625 @default.
- W2948196832 cites W2522520884 @default.
- W2948196832 cites W2546410677 @default.
- W2948196832 cites W2550848904 @default.
- W2948196832 cites W2586839650 @default.
- W2948196832 cites W2592765733 @default.
- W2948196832 cites W2594014149 @default.
- W2948196832 cites W2596649969 @default.
- W2948196832 cites W2604388535 @default.
- W2948196832 cites W2604759322 @default.
- W2948196832 cites W2621007086 @default.
- W2948196832 cites W2724605769 @default.
- W2948196832 cites W2733840449 @default.
- W2948196832 cites W2737373222 @default.
- W2948196832 cites W2754800521 @default.
- W2948196832 cites W2756043273 @default.
- W2948196832 cites W2766766852 @default.
- W2948196832 cites W2768491633 @default.
- W2948196832 cites W2773896164 @default.
- W2948196832 cites W2788668007 @default.
- W2948196832 cites W2793251588 @default.
- W2948196832 cites W2794518994 @default.
- W2948196832 cites W2794990008 @default.
- W2948196832 cites W2795630411 @default.
- W2948196832 cites W2803328900 @default.
- W2948196832 cites W2804263814 @default.
- W2948196832 cites W2807964732 @default.
- W2948196832 cites W2887693514 @default.
- W2948196832 cites W2893202038 @default.
- W2948196832 cites W2894577841 @default.
- W2948196832 cites W2897919764 @default.
- W2948196832 cites W2919115771 @default.
- W2948196832 cites W2963202012 @default.
- W2948196832 cites W3106061934 @default.
- W2948196832 cites W4233764193 @default.
- W2948196832 cites W4239510810 @default.
- W2948196832 cites W4249760698 @default.
- W2948196832 cites W4251410814 @default.
- W2948196832 doi "https://doi.org/10.2214/ajr.19.21117" @default.
- W2948196832 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6706287" @default.
- W2948196832 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31166761" @default.
- W2948196832 hasPublicationYear "2019" @default.
- W2948196832 type Work @default.
- W2948196832 sameAs 2948196832 @default.
- W2948196832 citedByCount "82" @default.
- W2948196832 countsByYear W29481968322019 @default.
- W2948196832 countsByYear W29481968322020 @default.
- W2948196832 countsByYear W29481968322021 @default.
- W2948196832 countsByYear W29481968322022 @default.
- W2948196832 countsByYear W29481968322023 @default.
- W2948196832 crossrefType "journal-article" @default.
- W2948196832 hasAuthorship W2948196832A5002093701 @default.
- W2948196832 hasAuthorship W2948196832A5029839088 @default.
- W2948196832 hasAuthorship W2948196832A5053278565 @default.
- W2948196832 hasAuthorship W2948196832A5072436140 @default.
- W2948196832 hasAuthorship W2948196832A5076466742 @default.
- W2948196832 hasAuthorship W2948196832A5085599977 @default.
- W2948196832 hasBestOaLocation W29481968322 @default.
- W2948196832 hasConcept C111472728 @default.
- W2948196832 hasConcept C115961682 @default.
- W2948196832 hasConcept C119857082 @default.
- W2948196832 hasConcept C121332964 @default.
- W2948196832 hasConcept C138885662 @default.
- W2948196832 hasConcept C154945302 @default.
- W2948196832 hasConcept C168167062 @default.