Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948244328> ?p ?o ?g. }
- W2948244328 endingPage "60002" @default.
- W2948244328 startingPage "60002" @default.
- W2948244328 abstract "How to implement multi-qubit gates efficiently with high precision is essential for realizing universal fault tolerant computing. For a physical system with some external controllable parameters, it is a great challenge to control the time dependence of these parameters to achieve a target multi-qubit gate efficiently and precisely. Here we construct a dueling double deep Q-learning neural network (DDDQN) to find out the optimized time dependence of controllable parameters to implement two typical quantum gates: a single-qubit Hadamard gate and a two-qubit CNOT gate. Compared with traditional optimal control methods, this deep reinforcement learning method can realize efficient and precise gate control without requiring any gradient information during the learning process. This work attempts to pave the way to investigate more quantum control problems with deep reinforcement learning techniques." @default.
- W2948244328 created "2019-06-14" @default.
- W2948244328 creator A5007794910 @default.
- W2948244328 creator A5040741758 @default.
- W2948244328 date "2019-07-22" @default.
- W2948244328 modified "2023-10-18" @default.
- W2948244328 title "Deep reinforcement learning for quantum gate control" @default.
- W2948244328 cites W1692771265 @default.
- W2948244328 cites W1976454813 @default.
- W2948244328 cites W1981659415 @default.
- W2948244328 cites W2017293193 @default.
- W2948244328 cites W2023232348 @default.
- W2948244328 cites W2029539632 @default.
- W2948244328 cites W2036449859 @default.
- W2948244328 cites W2145339207 @default.
- W2948244328 cites W2160005414 @default.
- W2948244328 cites W2161655651 @default.
- W2948244328 cites W2203542361 @default.
- W2948244328 cites W2257979135 @default.
- W2948244328 cites W2313164258 @default.
- W2948244328 cites W2337082154 @default.
- W2948244328 cites W2419175238 @default.
- W2948244328 cites W2496556349 @default.
- W2948244328 cites W2531147647 @default.
- W2948244328 cites W2559394418 @default.
- W2948244328 cites W2750586355 @default.
- W2948244328 cites W2754797405 @default.
- W2948244328 cites W2766447205 @default.
- W2948244328 cites W2794731980 @default.
- W2948244328 doi "https://doi.org/10.1209/0295-5075/126/60002" @default.
- W2948244328 hasPublicationYear "2019" @default.
- W2948244328 type Work @default.
- W2948244328 sameAs 2948244328 @default.
- W2948244328 citedByCount "62" @default.
- W2948244328 countsByYear W29482443282019 @default.
- W2948244328 countsByYear W29482443282020 @default.
- W2948244328 countsByYear W29482443282021 @default.
- W2948244328 countsByYear W29482443282022 @default.
- W2948244328 countsByYear W29482443282023 @default.
- W2948244328 crossrefType "journal-article" @default.
- W2948244328 hasAuthorship W2948244328A5007794910 @default.
- W2948244328 hasAuthorship W2948244328A5040741758 @default.
- W2948244328 hasBestOaLocation W29482443282 @default.
- W2948244328 hasConcept C108583219 @default.
- W2948244328 hasConcept C119599485 @default.
- W2948244328 hasConcept C121332964 @default.
- W2948244328 hasConcept C124148022 @default.
- W2948244328 hasConcept C127413603 @default.
- W2948244328 hasConcept C154945302 @default.
- W2948244328 hasConcept C182953411 @default.
- W2948244328 hasConcept C184720557 @default.
- W2948244328 hasConcept C203087015 @default.
- W2948244328 hasConcept C41008148 @default.
- W2948244328 hasConcept C50644808 @default.
- W2948244328 hasConcept C51003876 @default.
- W2948244328 hasConcept C58053490 @default.
- W2948244328 hasConcept C58849907 @default.
- W2948244328 hasConcept C60292330 @default.
- W2948244328 hasConcept C62520636 @default.
- W2948244328 hasConcept C84114770 @default.
- W2948244328 hasConcept C97541855 @default.
- W2948244328 hasConceptScore W2948244328C108583219 @default.
- W2948244328 hasConceptScore W2948244328C119599485 @default.
- W2948244328 hasConceptScore W2948244328C121332964 @default.
- W2948244328 hasConceptScore W2948244328C124148022 @default.
- W2948244328 hasConceptScore W2948244328C127413603 @default.
- W2948244328 hasConceptScore W2948244328C154945302 @default.
- W2948244328 hasConceptScore W2948244328C182953411 @default.
- W2948244328 hasConceptScore W2948244328C184720557 @default.
- W2948244328 hasConceptScore W2948244328C203087015 @default.
- W2948244328 hasConceptScore W2948244328C41008148 @default.
- W2948244328 hasConceptScore W2948244328C50644808 @default.
- W2948244328 hasConceptScore W2948244328C51003876 @default.
- W2948244328 hasConceptScore W2948244328C58053490 @default.
- W2948244328 hasConceptScore W2948244328C58849907 @default.
- W2948244328 hasConceptScore W2948244328C60292330 @default.
- W2948244328 hasConceptScore W2948244328C62520636 @default.
- W2948244328 hasConceptScore W2948244328C84114770 @default.
- W2948244328 hasConceptScore W2948244328C97541855 @default.
- W2948244328 hasIssue "6" @default.
- W2948244328 hasLocation W29482443281 @default.
- W2948244328 hasLocation W29482443282 @default.
- W2948244328 hasLocation W29482443283 @default.
- W2948244328 hasOpenAccess W2948244328 @default.
- W2948244328 hasPrimaryLocation W29482443281 @default.
- W2948244328 hasRelatedWork W175446139 @default.
- W2948244328 hasRelatedWork W179560240 @default.
- W2948244328 hasRelatedWork W2005170092 @default.
- W2948244328 hasRelatedWork W2035757233 @default.
- W2948244328 hasRelatedWork W2344889042 @default.
- W2948244328 hasRelatedWork W3081843797 @default.
- W2948244328 hasRelatedWork W3137239098 @default.
- W2948244328 hasRelatedWork W4283715225 @default.
- W2948244328 hasRelatedWork W4286381876 @default.
- W2948244328 hasRelatedWork W4295352877 @default.
- W2948244328 hasVolume "126" @default.
- W2948244328 isParatext "false" @default.
- W2948244328 isRetracted "false" @default.