Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948250022> ?p ?o ?g. }
- W2948250022 endingPage "e0217966" @default.
- W2948250022 startingPage "e0217966" @default.
- W2948250022 abstract "Many computational theories have been developed to improve artificial phonetic classification performance from linguistic auditory streams. However, less attention has been given to psycholinguistic data and neurophysiological features recently found in cortical tissue. We focus on a context in which basic linguistic units-such as phonemes-are extracted and robustly classified by humans and other animals from complex acoustic streams in speech data. We are especially motivated by the fact that 8-month-old human infants can accomplish segmentation of words from fluent audio streams based exclusively on the statistical relationships between neighboring speech sounds without any kind of supervision. In this paper, we introduce a biologically inspired and fully unsupervised neurocomputational approach that incorporates key neurophysiological and anatomical cortical properties, including columnar organization, spontaneous micro-columnar formation, adaptation to contextual activations and Sparse Distributed Representations (SDRs) produced by means of partial N-Methyl-D-aspartic acid (NMDA) depolarization. Its feature abstraction capabilities show promising phonetic invariance and generalization attributes. Our model improves the performance of a Support Vector Machine (SVM) classifier for monosyllabic, disyllabic and trisyllabic word classification tasks in the presence of environmental disturbances such as white noise, reverberation, and pitch and voice variations. Furthermore, our approach emphasizes potential self-organizing cortical principles achieving improvement without any kind of optimization guidance which could minimize hypothetical loss functions by means of-for example-backpropagation. Thus, our computational model outperforms multiresolution spectro-temporal auditory feature representations using only the statistical sequential structure immerse in the phonotactic rules of the input stream." @default.
- W2948250022 created "2019-06-14" @default.
- W2948250022 creator A5004390455 @default.
- W2948250022 creator A5012083077 @default.
- W2948250022 creator A5022638931 @default.
- W2948250022 creator A5058624762 @default.
- W2948250022 creator A5074177185 @default.
- W2948250022 date "2019-06-07" @default.
- W2948250022 modified "2023-10-10" @default.
- W2948250022 title "Phonetic acquisition in cortical dynamics, a computational approach" @default.
- W2948250022 cites W1851575612 @default.
- W2948250022 cites W1971335223 @default.
- W2948250022 cites W1976106770 @default.
- W2948250022 cites W1980862600 @default.
- W2948250022 cites W1984732134 @default.
- W2948250022 cites W1987282049 @default.
- W2948250022 cites W1991848143 @default.
- W2948250022 cites W1996141026 @default.
- W2948250022 cites W2002681612 @default.
- W2948250022 cites W2010188467 @default.
- W2948250022 cites W2011537586 @default.
- W2948250022 cites W2012441310 @default.
- W2948250022 cites W2022465033 @default.
- W2948250022 cites W2025192094 @default.
- W2948250022 cites W2029948425 @default.
- W2948250022 cites W2030341586 @default.
- W2948250022 cites W2032998888 @default.
- W2948250022 cites W2036714085 @default.
- W2948250022 cites W2041117252 @default.
- W2948250022 cites W2043567784 @default.
- W2948250022 cites W2050296545 @default.
- W2948250022 cites W2051055061 @default.
- W2948250022 cites W2054139811 @default.
- W2948250022 cites W2056001434 @default.
- W2948250022 cites W2057898689 @default.
- W2948250022 cites W2070012077 @default.
- W2948250022 cites W2072497663 @default.
- W2948250022 cites W2076462413 @default.
- W2948250022 cites W2086664483 @default.
- W2948250022 cites W2088769470 @default.
- W2948250022 cites W2091821452 @default.
- W2948250022 cites W2102182691 @default.
- W2948250022 cites W2103934527 @default.
- W2948250022 cites W2103994288 @default.
- W2948250022 cites W2106069155 @default.
- W2948250022 cites W2113197787 @default.
- W2948250022 cites W2116360511 @default.
- W2948250022 cites W2117731089 @default.
- W2948250022 cites W2118449752 @default.
- W2948250022 cites W2122516409 @default.
- W2948250022 cites W2131662013 @default.
- W2948250022 cites W2135191640 @default.
- W2948250022 cites W2138377239 @default.
- W2948250022 cites W2152781875 @default.
- W2948250022 cites W2152986454 @default.
- W2948250022 cites W2153635508 @default.
- W2948250022 cites W2166645545 @default.
- W2948250022 cites W2166756233 @default.
- W2948250022 cites W2167124036 @default.
- W2948250022 cites W2177522049 @default.
- W2948250022 cites W2253776861 @default.
- W2948250022 cites W2529004582 @default.
- W2948250022 cites W2529327698 @default.
- W2948250022 cites W2552737632 @default.
- W2948250022 cites W2800603749 @default.
- W2948250022 cites W2951065015 @default.
- W2948250022 cites W2964284952 @default.
- W2948250022 cites W65738273 @default.
- W2948250022 doi "https://doi.org/10.1371/journal.pone.0217966" @default.
- W2948250022 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6555517" @default.
- W2948250022 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31173613" @default.
- W2948250022 hasPublicationYear "2019" @default.
- W2948250022 type Work @default.
- W2948250022 sameAs 2948250022 @default.
- W2948250022 citedByCount "3" @default.
- W2948250022 countsByYear W29482500222020 @default.
- W2948250022 countsByYear W29482500222023 @default.
- W2948250022 crossrefType "journal-article" @default.
- W2948250022 hasAuthorship W2948250022A5004390455 @default.
- W2948250022 hasAuthorship W2948250022A5012083077 @default.
- W2948250022 hasAuthorship W2948250022A5022638931 @default.
- W2948250022 hasAuthorship W2948250022A5058624762 @default.
- W2948250022 hasAuthorship W2948250022A5074177185 @default.
- W2948250022 hasBestOaLocation W29482500221 @default.
- W2948250022 hasConcept C12267149 @default.
- W2948250022 hasConcept C153180895 @default.
- W2948250022 hasConcept C154945302 @default.
- W2948250022 hasConcept C15744967 @default.
- W2948250022 hasConcept C169760540 @default.
- W2948250022 hasConcept C2780297895 @default.
- W2948250022 hasConcept C28490314 @default.
- W2948250022 hasConcept C41008148 @default.
- W2948250022 hasConcept C66024118 @default.
- W2948250022 hasConcept C73208851 @default.
- W2948250022 hasConcept C95623464 @default.
- W2948250022 hasConceptScore W2948250022C12267149 @default.
- W2948250022 hasConceptScore W2948250022C153180895 @default.
- W2948250022 hasConceptScore W2948250022C154945302 @default.