Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948394494> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2948394494 endingPage "373" @default.
- W2948394494 startingPage "362" @default.
- W2948394494 abstract "This paper shows a neural networks-based demand forecasting model designed for a small manufacturer of bottled water in Ecuador, which currently doesn’t have adequate demand forecast methodologies, causing problems of customer orders non-compliance, inventory excess and economic losses. However, by working with accurate predictions, the manufacturer will have an anticipated vision of future needs in order to satisfy the demand for manufactured products, in other words, to guarantee on time and reasonable use of the resources. To solve the problems that this small manufacturer has to face a historic demand data acquisition process was done through the last 36 months costumer order records. In the construction of the historical time series, that was analyzed, demand dates and volumes were established as input variables. Then the design of forecast models was done, based on classical methods and multi-layer neural networks, which were evaluated by means of quantitative error indicators. The application of these methods was done through the R programming language. After this, a stage of training and improvement of the network is included, it was evaluated against the results of the classic forecasting methods, and the next 12 months were predicted by means of the best obtained model. Finally, the feasibility of the use of neural networks in the forecast of demand for purified water bottles, is demonstrated." @default.
- W2948394494 created "2019-06-14" @default.
- W2948394494 creator A5002277716 @default.
- W2948394494 creator A5014413349 @default.
- W2948394494 creator A5042455403 @default.
- W2948394494 creator A5057204642 @default.
- W2948394494 creator A5062882562 @default.
- W2948394494 creator A5068852288 @default.
- W2948394494 creator A5080346296 @default.
- W2948394494 date "2019-01-01" @default.
- W2948394494 modified "2023-09-28" @default.
- W2948394494 title "Artificial Neural Networks for Bottled Water Demand Forecasting: A Small Business Case Study" @default.
- W2948394494 cites W1501910625 @default.
- W2948394494 cites W2052671788 @default.
- W2948394494 cites W2131534673 @default.
- W2948394494 cites W2434187263 @default.
- W2948394494 cites W2562262019 @default.
- W2948394494 cites W2746174496 @default.
- W2948394494 cites W2888199501 @default.
- W2948394494 doi "https://doi.org/10.1007/978-3-030-20518-8_31" @default.
- W2948394494 hasPublicationYear "2019" @default.
- W2948394494 type Work @default.
- W2948394494 sameAs 2948394494 @default.
- W2948394494 citedByCount "5" @default.
- W2948394494 countsByYear W29483944942020 @default.
- W2948394494 countsByYear W29483944942021 @default.
- W2948394494 countsByYear W29483944942023 @default.
- W2948394494 crossrefType "book-chapter" @default.
- W2948394494 hasAuthorship W2948394494A5002277716 @default.
- W2948394494 hasAuthorship W2948394494A5014413349 @default.
- W2948394494 hasAuthorship W2948394494A5042455403 @default.
- W2948394494 hasAuthorship W2948394494A5057204642 @default.
- W2948394494 hasAuthorship W2948394494A5062882562 @default.
- W2948394494 hasAuthorship W2948394494A5068852288 @default.
- W2948394494 hasAuthorship W2948394494A5080346296 @default.
- W2948394494 hasConcept C10138342 @default.
- W2948394494 hasConcept C111919701 @default.
- W2948394494 hasConcept C120330832 @default.
- W2948394494 hasConcept C127413603 @default.
- W2948394494 hasConcept C13736549 @default.
- W2948394494 hasConcept C154945302 @default.
- W2948394494 hasConcept C162324750 @default.
- W2948394494 hasConcept C175444787 @default.
- W2948394494 hasConcept C182306322 @default.
- W2948394494 hasConcept C193809577 @default.
- W2948394494 hasConcept C2778632158 @default.
- W2948394494 hasConcept C41008148 @default.
- W2948394494 hasConcept C42475967 @default.
- W2948394494 hasConcept C50644808 @default.
- W2948394494 hasConcept C87717796 @default.
- W2948394494 hasConcept C98045186 @default.
- W2948394494 hasConceptScore W2948394494C10138342 @default.
- W2948394494 hasConceptScore W2948394494C111919701 @default.
- W2948394494 hasConceptScore W2948394494C120330832 @default.
- W2948394494 hasConceptScore W2948394494C127413603 @default.
- W2948394494 hasConceptScore W2948394494C13736549 @default.
- W2948394494 hasConceptScore W2948394494C154945302 @default.
- W2948394494 hasConceptScore W2948394494C162324750 @default.
- W2948394494 hasConceptScore W2948394494C175444787 @default.
- W2948394494 hasConceptScore W2948394494C182306322 @default.
- W2948394494 hasConceptScore W2948394494C193809577 @default.
- W2948394494 hasConceptScore W2948394494C2778632158 @default.
- W2948394494 hasConceptScore W2948394494C41008148 @default.
- W2948394494 hasConceptScore W2948394494C42475967 @default.
- W2948394494 hasConceptScore W2948394494C50644808 @default.
- W2948394494 hasConceptScore W2948394494C87717796 @default.
- W2948394494 hasConceptScore W2948394494C98045186 @default.
- W2948394494 hasLocation W29483944941 @default.
- W2948394494 hasOpenAccess W2948394494 @default.
- W2948394494 hasPrimaryLocation W29483944941 @default.
- W2948394494 hasRelatedWork W1865391159 @default.
- W2948394494 hasRelatedWork W2045793289 @default.
- W2948394494 hasRelatedWork W2069100392 @default.
- W2948394494 hasRelatedWork W2353352051 @default.
- W2948394494 hasRelatedWork W2378979384 @default.
- W2948394494 hasRelatedWork W2387073512 @default.
- W2948394494 hasRelatedWork W2912632670 @default.
- W2948394494 hasRelatedWork W2940690822 @default.
- W2948394494 hasRelatedWork W2993912636 @default.
- W2948394494 hasRelatedWork W4366695659 @default.
- W2948394494 isParatext "false" @default.
- W2948394494 isRetracted "false" @default.
- W2948394494 magId "2948394494" @default.
- W2948394494 workType "book-chapter" @default.